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Abstract

Substantial progress has been made in deep learning in recent years, with neural networks
transforming our lives. However, optimisation in deep learning faces fundamental chal-
lenges as neural network landscapes are dominated by saddle points. Current first-order
methods are efficient and scalable, but struggle in these regions and cannot converge
quickly. Second-order methods are more effective, but are computationally intractable.
This presents the fundamental question—how do we achieve the benefits of second-order
methods while maintaining the efficiency of first-order methods?

In this thesis, we present KryBall, a novel optimisation algorithm that combines the
best of first and second-order methods. We use a Krylov subspace approach, along-
side Saddle-Free-Newton dynamics and a quadratic trust-region framework to efficiently
incorporate second-order information. Our results demonstrate that KryBall achieves
rapid convergence on ill-conditioned problems and binary classification, outperforming
the state-of-the-art, and is generally competitive on image classification. We also provide
an analysis on the deep learning optimisation landscape and demonstrate key theoretical
properties of our approach.
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Chapter 1

Introduction

1.1 The need for optimisation

Optimisation is everywhere. In nature, physical systems self-organise towards a state
of minimum energy. Light rays travel in the most efficient path to their destination.
In society, businesses strive to maximise users and profit. Engineering processes aim to
maximise efficiency and minimise waste.

Optimisation is paramount to the performance of many real-world systems and models.
Within the last decade, optimisation has been key in enabling the deep learning revolu-
tion in the field of machine learning. This has resulted in state-of-the-art performance
in tasks such as ImageNet for image classification (Krizhevsky et al., 2017) and Al-
phaFold for protein folding prediction (Jumper et al., 2021). Recently, with advances in
hardware, large language models have been able to offer agentic experiences that enable
human-like interactions (Chowdhery et al., 2023).

For these models to perform well, they need to learn complex concepts from a set of
data and be able to generalise. The process of navigating the model to do this is the role
of optimisation in deep learning. Given some objective, a quantitative measure of the
model’s performance, that is dependent on a set of parameters, the optimisation process
is finding the right parameters that optimises the objective. For example, the objective
for protein folding prediction could be to find a minimum energy conformation and the
parameters could be the positions of the atoms of proteins and their orientations.

Throughout the years, many optimisation algorithms have been proposed for deep learn-
ing. At the most fundamental level, these can be categorised into either first-order or
second-order methods. First-order methods guide the model by using information ob-
tained from the first derivative of the objective. Second-order methods use information
from the second derivative. Currently widely adopted and state-of-the-art optimisers,
such as SGD (Robbins and Monro, 1951) and Adam (Kingma, 2014), are first-order
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1 Introduction

methods due to computational efficiency and scalability.

1.2 The curse of dimensionality and saddle points

However, the process of optimisation becomes increasingly difficult as the number of
parameters increase. More specifically, the landscape of our models becomes very com-
plex as we scale with dimensionality. An example is shown in Fig. 1.1. In these high-
dimensional spaces, we see a phenomenon where there are exponentially more frequent
saddle points than the points that locally optimise our objective (Dauphin et al., 2014).

Figure 1.1: A visualisation of the loss landscape of a ResNet-56 model for image classi-
fication.

A saddle point is a flat region where along some dimensions, the second-order derivative
of the objective is negative, but along others, it is positive. First-order methods slow
down at saddle points since they perceive it as a flat region and do not have information
about the curvature of the surrounding landscape. This hinders their convergence to a
good solution.

Second-order methods, by incorporating this curvature information, can identify the
nature of saddle points and navigate away from them more effectively. Despite this,
it becomes computationally infeasible to process second-order information. This is be-
cause to obtain second-order information, we would require at least O(N2) space for
N parameters. The computational cost of obtaining second-order information becomes
prohibitive as N increases, which is the case given our deep learning setting. As a prac-
tical example, a ResNet-50 model has N = 25 × 106 parameters. If we consider each
parameter to be represented by 16-bits, we would require 1.25× 1015 bytes, or 1.25 ter-
abytes of memory to store the second-order information. This is in stark contrast to the
25 million bytes, or 25 megabytes, required for first-order information.

1.3 KryBall: the best of both worlds

The challenge is to therefore develop an optimisation algorithm that is computationally
tractable and scalable, like first-order methods, but can also navigate complex loss land-
scapes, particularly by escaping saddle points quickly, like second-order methods. In this

2



1.4 Contributions

thesis, we propose a new optimisation algorithm, KryBall, that combines the benefits of
first-order and second-order methods. We summarise our approach below.

1. We use a Krylov subspace to approximate local curvature information as a low-
dimensional subspace via efficient Hessian-vector products.

2. We analyse this subspace to understand the dominant geometric features of the
local landscape.

3. We compute the Saddle-Free Newton direction within this subspace (Dauphin
et al., 2014).

4. We combine this with first-order information such as the gradient and momentum
in a trust region framework that uses a quadratic model approximation of the local
landscape to get a combined, final search direction.

KryBall makes more informed steps than pure first-order methods, particularly in regions
like saddle points, while remaining computationally tractable for deep learning. To
motivate our method, we show an example in Fig. 1.2, where first-order methods such
as Adam and SGD are hindered on a classic 2D horse saddle, but KryBall successfully
escapes it quickly in fewer iterations.

(a) A classic 2D horse saddle with KryBall, SGD
and Adam and their optimisation trajectories.

(b) A zoomed in version. KryBall successfully es-
capes the saddle point.

Figure 1.2: A toy example of our method, KryBall, successfully escaping the saddle point
while first-order methods such as Adam and SGD are hindered.

1.4 Contributions

Our work focuses on the design and implementation of a novel optimisation algorithm
for deep learning, KryBall. In this thesis, we present:

3



1 Introduction

1. The KryBall Optimisation Algorithm: The proposal, design, and implemen-
tation of KryBall that combines Krylov subspace methods with the Saddle-Free-
Newton and a trust-region framework. This enables efficient approximation of local
curvature information and navigation of complex loss landscapes, while remaining
computationally tractable for deep learning applications.

2. Theoretical Analysis and Tools: We provide analytical tools for assessing
approximation quality through reconstruction error analysis and systematic inves-
tigation of loss landscape properties, including the effects of activation functions
and problem conditioning on optimisation behaviour.

3. Practical Implementation Framework: The first N-dimensional subspace op-
timiser fully integrated with PyTorch as a drop-in replacement, alongside a mod-
ular experimental suite for optimiser research that integrates classic optimisation
functions with modern deep learning workflows.

We evaluate KryBall extensively across diverse tasks including ill-conditioned function
optimisation, binary classification, and image classification, with detailed sensitivity
analysis and comparison against state-of-the-art optimisers.

1.5 Thesis outline

To present our contributions, this thesis is organised in the following manner:

• Chapter 2 provides a comprehensive background on optimisation. We formalise the
optimisation problem and discuss the optimisation landscape from a mathematical
perspective. This is followed by optimisation in deep learning, where first-order
and second-order methods are explained. We then introduce methods for incorpo-
rating curvature information, such as Hessian-vector products, Krylov subspaces
and trust region algorithms.

• Chapter 3 provides a comprehensive review of the relevant literature. This in-
cludes a survey of first-order and second-order optimisation algorithms used in
deep learning. We compare these methods with our own.

• Chapter 4 presents the KryBall algorithm. We formally describe its components.
This includes the Krylov subspace construction, the Saddle-Free-Newton compu-
tation, and integration with the trust-region framework.

• Chapter 5 presents our evaluations and analysis. We describe our experimental
setup and benchmarking suite. This includes the datasets, model architectures,
evaluation metrics, hyperparameter configurations, and comparison with state-of-
the-art optimisers. This is followed by a sensitivity analysis. We then interpret our
findings, analyse potential failure cases and unexpected behaviours, and address
current limitations.

4



1.5 Thesis outline

• Chapter 6 finishes the thesis. We summarise our contributions, discuss the impli-
cations of our work, and suggest future research.

This chapter has laid the outline for the thesis. We now proceed to Chapter 2 to establish
the necessary mathematical context.

5
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Chapter 2

Technical Background

In this chapter, we provide the relevant technical background required to understand our
work. We start by introducing the optimisation problem in Sec. 2.1. This is continued by
a mathematical formulation of the optimisation landscape in Sec. 2.2. We then discuss
optimisation in deep learning in Sec. 2.3. We end this chapter with a discussion of
computationally tractable methods for curvature exploitation in Sec. 2.4.

2.1 The Optimisation Problem

In this section, we formalise the optimisation problem. In the most fundamental case,
we minimise an objective function f with respect to real-valued variables with no con-
straints. The formulation is

min
x

f(x) (2.1)

where

• x ∈ Rn is a real-valued vector with n ≥ 1 components,

• f : Rn → R is a real-valued function,

• f ∈ Ck s.t. k ≥ 1, where Ck is the space of functions that are k times continuously
differentiable.

We only have a local perspective of f , since it is usually expensive to evaluate. We
know what f evaluates to on a limited set of points x0, x1, . . . , xk, in which we use this
information to iteratively search for an optimal point x∗ that minimises f . To do this, we
must first understand the landscape of f and the scenarios that emerge when traversing
it.

7



2 Technical Background

2.2 The Optimisation Landscape

In this section, we introduce fundamental concepts that describe the landscape of f ,
which are needed to develop and analyse optimisation algorithms. We start by introduc-
ing the notion of critical points and how to recognise them in Sec. 2.2.1 and Sec. 2.2.2.
We then discuss convexity in Sec. 2.2.3. This is followed by a discussion of ill-conditioning
and non-smoothness in Sec. 2.2.4.

2.2.1 Critical Points

When exploring the landscape of an objective function, we are interested in identifying
specific points of interest that characterise its features. These are called critical points
(Goodfellow et al., 2016; Deisenroth et al., 2020). The most desirable of these are global
optima, in which there are global minimum or global maximum (Nocedal and Wright,
2006). An example is provided in Fig. 2.1.

Definition 1 (Global Minimum). A point x∗ is a global minimum if f(x∗) ≤ f(x) for
all x in the entire domain of f .

Definition 2 (Global Maximum). A point x∗ is a global maximum if f(x∗) ≥ f(x) for
all x in the entire domain of f .

(a) A global minimum on
f(x, y) = (x− sin(y))2 + (y − sin(x))2.

(b) A global maximum on

f(x, y) = cos(x2 + y2)e−0.1(x2+y2).

Figure 2.1: Examples of a global minimum and global maximum marked in red.

Finding such global optima is challenging, as we only have a limited set of information
about f and are resource constrained when evaluating it. Thus, many optimisation
algorithms aim to find local optima, which are points that are locally optimal. Similarly,
there are local minimum or local maximum (Nocedal and Wright, 2006; Goodfellow
et al., 2016). We provide examples in Fig. 2.2. We define these points with respect to a
neighbourhood N of a point x.

8



2.2 The Optimisation Landscape

Definition 3 (Neighbourhood). A neighbourhood N of a point x ∈ Rn is a set that
contains an open ball centered at x.

Definition 4 (Local Minimum). A point x∗ is a local minimum if there exists a neigh-
bourhood N around x∗ such that f(x∗) ≤ f(x) for all x ∈ N . It is a strict local minimum
if instead f(x∗) < f(x) for all x ∈ N \ {x∗}.

Definition 5 (Local Maximum). A point x∗ is a local maximum if there exists a neigh-
bourhoodN around x∗ such that f(x∗) ≥ f(x) for all x ∈ N . It is a strict local maximum
if instead f(x∗) > f(x) for all x ∈ N \ {x∗}.

(a) A local minimum on the egg crate function.
f(x, y) = (x2 + y2) + 5(sin(x)2 + sin(y)2).

(b) A local maximum on a multi-bump function.

f(x, y) = 3e−(x−1.5)2−(y−1.5)2 +

4e−(x+1)2−(y+1)2 .

Figure 2.2: Examples of a local minimum and local maximum marked in blue. The
global minimum and global maximum are marked in red for comparison.

Beyond these, we have saddle points. These are points that are locally flat but are neither
a local minimum nor a local maximum, as seen in Fig. 2.3. In any neighbourhood N
around a saddle point, the function’s value increases along some directions emanating
from x∗ and decreases along others. We formally define saddle points in Sec. 2.2.2.

2.2.2 Recognising Critical Points

For smooth and differentiable functions, we can recognise critical points using the first
and second order information about f . Here, we introduce the necessary and sufficient
conditions that we use to do this. We restrict our attention to the class of functions that
are twice continuously differentiable, where f ∈ C2 (Nocedal and Wright, 2006).

We start with a specific type of critical point, a stationary point. A key property of any
stationary point x∗ is that f is locally flat at x∗. This implies that its gradient—the
vector of first-order partial derivatives, ∇f(x∗)—must be zero (Goodfellow et al., 2016;
Deisenroth et al., 2020).

Definition 6 (Stationary Point). A point x∗ is a stationary point if f is continuously
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(a) A saddle point on the horse saddle function.
f(x, y) = x2 − y2.

(b) A saddle point on the monkey saddle function.
f(x, y) = x3 − 3xy2.

Figure 2.3: Examples of two functions containing saddle points marked in orange.

differentiable at x∗ and its gradient is zero:

∇f(x∗) = 0. (2.2)

Given we are optimising f , we want to find a stationary point that is a local mini-
mum. The following definition formalises the necessary first-order conditions for a local
minimum (Nocedal and Wright, 2006).

Definition 7 (Necessary First-Order Conditions). If a point x∗ is a local minimum, and
f is continuously differentiable at x∗, then ∇f(x∗) = 0 and x∗ is a stationary point.

We note that all stationary points are critical points, but not all critical points are
stationary points. For example, a function may have a critical point at a point where
the gradient is undefined. A simple case is when f(x) = abs(x). This has a critical point
at x = 0 where the gradient is undefined. However, given we restrict our attention to
twice continuously differentiable functions, we do not need to consider these cases.

All global optima, local optima, and saddle points are stationary points, but not all
stationary points are optima. To distinguish between them, we examine the function’s
local curvature at x∗, which is captured by the Hessian matrix—an n × n symmetric
matrix of second-order partial derivatives of f , denoted∇2f(x) for a point x (Goodfellow
et al., 2016; Deisenroth et al., 2020; Nocedal and Wright, 2006). We abbreviate the
Hessian matrix for a function f at a point x as H for convenience. The curvature
information captured by H can be summarised by its eigenvalues. We denote the i-
th eigenvalue of H, and more generally any n × n symmetric matrix A, as λi, where
i ∈ [1, n]. We use these eigenvalues to characterise two important properties, positive
semidefiniteness and negative semidefiniteness.

Definition 8 (Positive Semidefinite Matrix). An n× n symmetric matrix A is positive
semidefinite if all its eigenvalues are non-negative, where λi ≥ 0 for all i ∈ [1, n].

10
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Definition 9 (Negative Semidefinite Matrix). An n×n symmetric matrix A is negative
semidefinite if all its eigenvalues are non-positive, where λi ≤ 0 for all i ∈ [1, n].

These properties can now be used to formalise the necessary second-order conditions
to classify stationary points (Nocedal and Wright, 2006). We write these for a local
minimum as follows.

Definition 10 (Necessary Second-Order Conditions). If a point x∗ is a local minimum,
and f is twice continuously differentiable, then:

• ∇f(x∗) = 0

• H is positive semi-definite at x∗.

Similarly, the above definition can be extended to a local maximum where H is negative
semi-definite.

A special case is when H is indefinite.

Definition 11 (Indefinite Matrix). An n × n symmetric matrix A is indefinite if it is
not positive semidefinite and not negative semidefinite. That is, there exists λi > 0 and
λj < 0 for some i, j ∈ [1, n] and i ̸= j.

Here, the function curves upwards in some directions and downwards in others. This is
a saddle point.

Definition 12 (Saddle Point). A stationary point x∗ is a saddle point if H is indefinite
at x∗.

Now, we can classify between local minima, local maxima, and saddle points based on
whether H is positive/negative semi-definite or indefinite. However, we can still fall
short of distinguishing between local minima/maxima and strict local minima/maxima.
For example, if H is positive semidefinite at x∗, x∗ could be a local minimum or a
flat region that is not a strict minimum (Nocedal and Wright, 2006). Similarly, if H
is negative semidefinite at x∗, we could be in a local maximum or a flat region. To
distinguish between this, we consider two further properties—positive definiteness and
negative definiteness, which are stronger conditions than positive and negative semi-
definiteness.

Definition 13 (Positive Definite Matrix). An n × n symmetric matrix A is positive
definite if all its eigenvalues are positive, where λi > 0 for all i ∈ [1, n].

Definition 14 (Negative Definite Matrix). An n × n symmetric matrix A is negative
definite if all its eigenvalues are negative, where λi < 0 for all i ∈ [1, n].

We can now guarantee something stricter about the nature of x∗, that it is a strict local
minimum/maximum. This guarantees that we will optimise our objective without being
trapped in a flat region. We write these as the sufficient second-order conditions for
optimisation (Nocedal and Wright, 2006). We formalise this for a strict local minimum
as follows.
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Definition 15 (Sufficient Second-Order Conditions). If f is twice continuously differ-
entiable, and ∇f(x∗) = 0, and H is positive definite at x∗, then x∗ is a strict local
minimum.

Similarly, we can write the sufficient second-order conditions for a strict local maximum
when H is negative definite at x∗.

We note that the sufficient second-order conditions are not necessary. A point x∗ may
satisfy the necessary second-order conditions but fail to satisfy the sufficient second-
order conditions (Nocedal and Wright, 2006). For example, the function f(x) = x4 has
a strict local minimum at x∗ = 0, but H vanishes here and is thus not positive definite
at x∗.

2.2.3 Convexity

The property of convexity simplifies the task of finding optima. A function f is convex
if geometrically, the line segment connecting any two points on the function’s graph lies
on or above the graph itself (Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006;
Deisenroth et al., 2020). We provide an illustration in Fig. 2.4, and formally define this
as follows.

Definition 16 (Convex Function). A function f : D → R, where D ⊆ Rn is a convex
set, is convex if for any two points x1, x2 in its domain, and any scalar t ∈ [0, 1]:

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (2.3)

This is a special case of Jensen’s inequality. Equivalently, a function is convex if H is
positive semidefinite for all x in the domain of f given f is twice continuously differen-
tiable.

Convex functions are particularly appealing because they possess global properties that
simplify the optimisation process. We call these properties the global optimality condi-
tions for convex functions (Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006).

Definition 17 (Global Optimality Conditions for Convex Functions). If f is convex,
then:

• Any local minimum x∗ is a global minimum of f .

• Any stationary point x∗ is a global minimum of f given f is continuously differ-
entiable.

This means that if we find a stationary point of a convex function, we have found the
overall best possible solution. Additionally, given that H is guaranteed to be positive
semidefinite for twice continuously differentiable convex functions, certain optimisation
algorithms can guarantee convergence to a global minimum regardless of the initialisation
point.
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Figure 2.4: An illustration of a convex function. The line segment created by x1 and x2
clearly lies above the function.

We can further strengthen this by considering the property of strict convexity. A strictly
convex function is one where the line segment connecting any two points on the function’s
graph lies strictly above the graph between those points (Boyd and Vandenberghe, 2004;
Nocedal and Wright, 2006). We illustrate the difference between convex and strictly
convex functions in Fig. 2.5. Formally, we define strictly convex functions as follows.

Definition 18 (Strictly Convex Function). A function f : Rn → R is strictly convex if
its domain is a convex set, and for any two distinct points x1, x2 such that x1 ̸= x2 in
its domain, and any scalar t ∈ (0, 1):

f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2). (2.4)

Equivalently, a function is strictly convex if H is positive definite for all x in the domain
of f given f is twice continuously differentiable.

Strictly convex functions are a subset of convex functions. They inherit the same global
optimality conditions, but with an additional uniqueness property that makes them
incredibly easy to optimise (Nocedal and Wright, 2006).

Definition 19 (Uniqueness of Global Minimum). If f is strictly convex, then there
exists at most one local minimum of f . Consequently, if it exists, then it is the global
minimum of f .

Thus, if we find any stationary point of a strictly convex function, we have found the
global minimum (Nocedal and Wright, 2006). This is different from convex functions,
where there could be multiple global minima. We provide an illustration of this in
Fig. 2.6. This makes strictly convex functions extremely desirable for optimisation,
since we have a guaranteed unique solution.
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(a) The Rectified Linear Unit (ReLU) function,
f(x) = max(0, x), is convex, but not strictly
convex since we can pick two points where the
line segment is not strictly above the function.

(b) The parabola function, f(x) = x2, is strictly
convex since for any two points, the line seg-
ment will always lie above the function.

Figure 2.5: The geometrical difference between a convex function and a strictly convex
function.

2.2.4 Ill-Conditioning and Non-Smoothness

While convexity simplifies the optimisation process, two other characteristics, ill-conditioning
and non-smoothness, significantly increase the difficulty instead. We now discuss these
two characteristics and their influence the optimisation landscape.

Ill-Conditioning

An optimisation problem is ill-conditioned if the objective function f is highly sensitive
to small changes to its parameters in the vicinity of a solution x∗. Geometrically, this
corresponds to a landscape that is either elongated with narrow valleys, or steep ridges
with large dropoffs, as illustrated in Fig. 2.7. To motivate the problem of ill-conditioning,
we consider the deterministic Rosenbrock function

f(x, y) = (1− x)2 + 100(y − x2)2. (2.5)

The global minimum for this function is at (x, y) = (1, 1). Suppose we introduce a small
perturbation ϵ1 = 0.01 to x and ϵ2 = 0.02 to y around the minimum. Our function
evaluates to

f(x+ ϵ1, y + ϵ2) = f(1 + 0.01, 1 + 0.02) ≈ 1e− 4. (2.6)

If we modify the perturbations to ϵ1 = 0.02 and ϵ2 = −0.01 instead, our function value
now becomes

f(x+ ϵ1, y + ϵ2) = f(1 + 0.02, 1− 0.01) ≈ 0.25. (2.7)

We see a significant change in how our function behaves, where it is now 2500 times larger
than before with only small changes applied to its input. This illustrates the problem

14



2.2 The Optimisation Landscape

(a) Multiple global minima on the convex function
f(x, y) = x2.

(b) A unique global minimum on the strictly con-
vex function f(x, y) = x2 + y2.

Figure 2.6: The difference between a convex function with multiple global minima and
a strictly convex function with a unique global minimum.

of ill-conditioning, which makes it difficult for optimisation algorithms to converge to a
solution. We describe the ill-conditioning of a problem in terms of the condition number
(Belsley et al., 2005; Boyd and Vandenberghe, 2004).

Definition 20 (Condition Number). For any non-singular square matrix A ∈ Rn×n, its
condition number with respect to a given matrix norm || · || is defined as:

κ(A) = ||A|| · ||A−1||, (2.8)

In the context of optimisation, if f is twice continuously differentiable at x and H is
positive definite at x, then the condition number is the ratio of the largest eigenvalue
λmax to the smallest eigenvalue λmin of H under the spectral norm || · ||2.

κ(H) = ||H||2||H−1||2 = λmax(H)λmax(H
−1) = λmax(H) · 1

λmin(H)
=

λmax(H)

λmin(H)
. (2.9)

In the Rosenbrock example, the condition number is 2508 at the minimum, which ex-
plains the behaviour we observed. Ill-conditioning poses significant challenges for many
optimisation algorithms, especially those relying on gradient information. In these land-
scapes, finding solutions that are robust to perturbations is difficult. Algorithms may
get stuck and make excessively small steps to counteract the ill-conditioning, which slows
convergence, or they become unstable due to taking overly aggressive steps. Efficient
navigation of these landscapes require algorithms to be scale invariant (Nocedal and
Wright, 2006). We discuss these algorithms in more detail in Sec. 2.3.

Non-Smooth Problems

So far, we have talked about optimisation problems where the objective function f
is smooth and usually twice continuously differentiable. However, many optimisation
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(a) The deterministic Rosenbrock function
f(x, y) = (1− x)2 + 100(y − x2)2

(b) A simplified 2D analogue of the wood function
f(x, y) = 100 ∗ (y−x2)2 +(1−x)2 +90 ∗ (y2 −
x)2 + (1− y)2

Figure 2.7: The optimisation landscape of two ill-conditioned functions. The Rosenbrock
function (left) shows the narrow valley towards the minimum, whereas the
2D wood function (right) shows a steep dropoff as we approach the minimum.

problems that we encounter involve non-smooth functions. These are functions that
possess points at which the function or its derivatives are not well-defined. We provide
an example of such functions which have points of non-differentiability in Fig. 2.8.

Non-smoothness is common in machine learning, with terms such as ReLU and L1 reg-
ularisation being used in many problem settings (Goodfellow et al., 2016; Deisenroth
et al., 2020). At points of non-differentiability, classical optimisation concepts that we
have been discussing break down. The optimisation of non-smooth functions requires
alternative theoretical frameworks and algorithms. While this is out of scope for this
thesis, we briefly provide an overview of such methods in Chapter 3. In specific in-
stances, we can reformulate the non-smooth problem into a smooth approximation. For
example, the ReLU function has an equivalent smooth approximation given by the Soft-
plus function, f(x) = log(1 + ex) (Goodfellow et al., 2016) (Paszke et al., 2017). While
non-smooth optimisation is out of scope for this thesis, we provide an overview of such
methods in Chapter 3.
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(a) The function f(x, y) = abs(x) + abs(y) has an
undefined gradient at (0,0).

(b) The step function f(x, y) = ⌊x⌋+ ⌊y⌋ has un-
defined gradients at all integer points.

Figure 2.8: The optimisation landscape of two non-smooth functions, with points of non-
differentiability highlighted in red.

2.3 Optimisation in Deep Learning

Deep learning introduces a new set of challenges to the optimisation landscape. In deep
learning, we usually have a set of input data x ∈ Rn and a target output y ∈ Rm. Our
goal is to learn a mapping from x to y. This is represented by a model, which is a
complex, highly parameterised function that is usually non-convex and can be thought
of as a universal function approximator (Hornik et al., 1989). Through exposure to
many examples in a training set, the model makes predictions ŷ for inputs x, and is then
evaluated on a test set with new, unseen inputs. Ideally, we would like our model to
make accurate predictions on the test set, as this is a good indicator of generalisation
performance. We optimise the model’s parameters, θ ∈ RN , by minimising a real-valued
loss function L : RN → R that measures model’s performance. Typically, this is written
as an average over the training set, such as

L(θ) = E(x,y)∼p̂dataL(f(x; θ), y) = E(x,y)∼p̂dataℓ(ŷ, y), (2.10)

where ŷ = f(x; θ), L is the per-example loss (such as mean-squared error or cross-
entropy), and p̂data is the empirical distribution of our training set. In practice, we
usually sample a set of examples Xi, Yi from the training set to compute ŷi and L
(Goodfellow et al., 2016; Paszke et al., 2017). We provide a general algorithm for deep
learning optimisation in Algorithm 1.
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Algorithm 1: General Model Optimisation

Input: Training data {(xi, yi)}ni=1, model f(x; θ) with initial parameters θ0,
loss function L, number of iterations T

Output: Optimised parameters θ
1 θ ← θ0
2 for t = 1, 2, . . . , T do
3 Sample a set of examples (Xt, Yt) from training data
4 Compute loss Lt(θ) = L(f(Xt; θ), Yt)
5 Find an update direction ∆θ
6 θ ← θ +∆θ

7 return θ

We limit our discussion of L to the supervised learning case, where we have a fixed input
x and a corresponding target output y and the inputs to L are ŷ and y. It is easy
to extend this development to the regularised case, for example by including θ as an
argument, or the unsupervised case by removing y.

In this section, we discuss the challenges of optimisation in deep learning. We start by
discussing the behaviour of high-dimensional landscapes in Sec. 2.3.1. This is followed by
a discussion of first-order methods in Sec. 2.3.2 and second-order methods in Sec. 2.3.3.

2.3.1 Challenges in High-Dimensional Landscapes

High-dimensional landscapes are complex and difficult to navigate. Recall that we saw
an example of this with a highly parameterised high-dimensional ResNet model in Chap-
ter 1. The geometric intuition derived from low-dimensional spaces is usually not appli-
cable. We observe two key properties in high-dimensions.

• Proliferation of saddle points: Saddle points are exponentially more likely than
local minima as dimensionality N increases (Dauphin et al., 2014).

• Local minima are close to global minimum: Local minima in high dimensions are
likely to have values very close to the global minimum (Dauphin et al., 2014;
Choromanska et al., 2015).

We can understand the first property by analysing H in the context of our loss function,
where we now have that H = ∇2L(θ). As established in Sec. 2.2.2, a local minimum
requires all H to be positive semidefinite, in which all eigenvalues are greater than or
equal to zero. A saddle point however possesses both positive and negative eigenvalues.
We note that for large random Gaussian matrices, the eigenvalue distribution follows
Wigner’s semicircle law, which states that as N increases, we observe the following
(Wigner, 1958; Dauphin et al., 2014).

• An eigenvalue λi has an equal probability of 1
2 to be positive or negative.

• Each eigenvalue’s probability is approximately independent of others.
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(a) The distribution of local minima, local max-
ima, and critical points of random Gaussian
matrices of dimensions N .

(b) The distribution of the eigenvalues at critical
points for various random Gaussian matrices
of dimensions N .

Figure 2.9: The distribution of critical points and their eigenvalues for random Gaussian
matrices of dimensions N .

Intuitively, we can consider the probability of each eigenvalue as akin to an independent
fair coin toss. The probability of obtaining N non-negative eigenvalues diminishes ex-
ponentially with increasing N . The same goes for obtaining N non-positive eigenvalues.
Consequently, obtaining N eigenvalues with mixed signs are far more probable, which
explains the proliferation of saddle points, as seen in Fig. 2.9(a). As N increases, the
eigenvalues follow the distribution of the semicircle law more, and we get approximately
equal numbers of positive and negative eigenvalues. We see this in Fig. 2.9(b). While
we have this case for large random Gaussian matrices, we note that this applies to the
deep learning setting as well. Experimental evidence shows that the landscapes of deep
learning models display many more saddle points than local minima (Dauphin et al.,
2014). We provide a more detailed analysis of the deep learning optimisation landscape
in Chapter 5.

The second property follows as a direct consequence of the first. Suppose we consider
a local minima with a function value that is substantially higher than the global min-
imum. Given high dimensionality, it is very probable that there exists at least one
eigenvalue that is negative which we can take to minimise the objective in some imme-
diate neighbourhood. Such a point would then be a saddle point, offering a local escape
direction. Given that local minima are so rare, we observe that they can only take a
range of loss values, in which these are close to the global minimum (Choromanska et al.,
2015; Dauphin et al., 2014; Goodfellow et al., 2016). This suggests that the challenge in
deep learning optimisation is less about getting trapped in poor local minima and more
about efficiently navigating the numerous saddle points that dominate the landscape
(Goodfellow et al., 2016).

The dominance of saddle points changes the optimisation landscape and impedes the
progress of optimisation algorithms. First-order methods that rely on gradient informa-
tion, such as gradient descent, experience slowed convergence in these regions. Second-
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order methods such as Newton’s method also face problems, as in some cases they are
actually attracted to saddle points, even though they have the benefit of having local
curvature information and are scale invariant. We cover these in the next two sections
Sec. 2.3.2 and Sec. 2.3.3.

2.3.2 First-Order Methods

Most optimisation algorithms in deep learning are first-order methods. First-order opti-
misation involves using the gradient of the loss function to iteratively update the model
parameters θ (Goodfellow et al., 2016; Deisenroth et al., 2020). In the deep learning set-
ting, this is defined as the vector of partial derivatives of L with respect to θ (Goodfellow
et al., 2016).

Definition 21 (Gradient of the Loss Function). The gradient of the loss function L
with respect to the parameters θ is defined as:

∇L(θ) =
(
∂L

∂θ1
,
∂L

∂θ2
, . . . ,

∂L

∂θN

)
. (2.11)

We abbreviate this as g for brevity. The gradient vector points in the direction of steepest
ascent of the loss function, and is thus the direction of most rapid change. We perform
an optimisation step by moving in the negative gradient direction, which is the direction
of steepest descent (Goodfellow et al., 2016; Deisenroth et al., 2020; Nocedal and Wright,
2006). The general update rule is given by:

∆θ = −αtgt, (2.12)

θt+1 = θt +∆θ, (2.13)

where θt denotes the model parameters at iteration t, gt is the gradient evaluated at
that point, and αt > 0 is the learning rate. The learning rate controls the step size of
the steepest descent step.

First-order methods are computationally efficient and scalable. This is because the up-
date can be performed with O(N) space for a model with N parameters for a single sam-
ple of data (Goodfellow et al., 2016; Deisenroth et al., 2020). This makes them extremely
appealing for deep learning, where models have millions or even billions of parameters
and we have constraints on computational resources (Goodfellow et al., 2016). These
methods are also highly parallelisable (Paszke et al., 2017). Modern GPU hardware and
distributed computing with efficient low-level kernels enable gradient computations to
be executed across multiple processing units, making them even more appealing (Paszke
et al., 2017).

However, while simple and effective in many scenarios, the reliance of first-order methods
on the gradient becomes problematic in high-dimensional landscapes that are charac-
terised by a proliferation of saddle points, as briefly mentioned in Sec. 2.3.1. In these
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regions of low curvature, the gradient magnitude is small. This leads to small, in-
cremental updates to our parameters that result in slowed convergence. Conversely,
in ill-conditioned landscapes as discussed in Sec. 2.2.4, the gradient can be noisy and
unstable. This is particularly the case for some ill-conditioned problems, such as the
Rahimi-Recht function, where the landscape becomes increasingly steep and majority of
the eigenvalues tend towards infinity as we approach the minimum (Rahimi and Recht,
2017). This results in slowed convergence and suboptimal solutions being found, and we
see this in the next section in Fig. 2.11. In the worst case, the possibility of divergence
is also present, which we will see later on in our evaluation in Chapter 5.

Numerous variations of first-order methods, despite these challenges, have made them
successful in deep learning and cemented them as the current state-of-the-art. These
include the use of stochastic gradients, momentum, and adaptive methods (Robbins and
Monro, 1951; Kingma, 2014). We provide a comprehensive overview of these optimisation
algorithms in Chapter 3.

2.3.3 Second-Order Methods

Second-order methods use local curvature information to traverse the optimisation land-
scape. This is captured by the Hessian of the loss function, which is in contrast to
first-order methods that solely rely on the gradient. We introduced the Hessian gener-
ally in Sec. 2.2.2. Here, we define it in the context of deep learning, where it is the matrix
of second-order partial derivatives of L with respect to the parameters θ (Goodfellow
et al., 2016).

Definition 22 (Hessian of the Loss Function). The Hessian of the loss function L with
respect to the parameters θ is the N ×N matrix of second-order partial derivatives:

∇2L(θ) =

(
∂2L

∂θi∂θj

)N

i,j=1

=


∂2L
∂θ21

∂2L
∂θ1∂θ2

· · · ∂2L
∂θ1∂θN

∂2L
∂θ2∂θ1

∂2L
∂θ22

· · · ∂2L
∂θ2∂θN

...
...

. . .
...

∂2L
∂θN∂θ1

∂2L
∂θN∂θ2

· · · ∂2L
∂θ2N

 . (2.14)

We denote this as H for brevity. Note that from here onwards, H specifically refers
to ∇2L(θ) rather than the general Hessian ∇2f(x) of an objective function previously
defined in Sec. 2.2.2.

The foundation of many second-order methods is the approximation of the loss function
using a quadratic model (Nocedal and Wright, 2006). This is derived by taking a second-
order Taylor expansion of the loss function (Nocedal and Wright, 2006). We define a
Taylor expansion in the one dimensional case as follows.

Definition 23 (Taylor Expansion). Given a function f : R→ R where f ∈ Cp, that is
f is p times continuously differentiable, the Taylor expansion of f about x = a is given
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by:

f(x) ≈
p∑

k=0

f (k)(a)

k!
(x− a)k (2.15)

= f(a) +
∇f(a)
1!

(x− a) +
∇2f(a)

2!
(x− a)2 + · · ·+ ∇

pf(a)

p!
(x− a)p. (2.16)

Intuitively, the Taylor expansion of a function f ∈ Cp at a point a is a degree-p poly-
nomial approximation of f(x) for x in a neighbourhood of a. As x approaches a, the
approximation becomes more accurate. We call this a pth-order Taylor expansion of f
at a. An illustration is provided in Fig. 2.10.

Figure 2.10: Given f(x) = sin(x), as the degree of the Taylor expansion increases, it
better approximates the function around our chosen point x = 0. Shown
here is the Taylor expansion of f where p ∈ [1, 3, 5, 7, 9, 11, 13] at x = 0.

Second-order methods, as said in their name, use a second-order Taylor expansion (i.e.,
p = 2). In deep learning, we want to minimise the loss function L given our current
parameters θ. This means we want to find a step ∆θ such that L(θ +∆θ) < L(θ). We
do this by taking a second-order Taylor expansion of L at θ to approximate L(θ +∆θ)
as follows.

L(θ +∆θ) ≈ L(θ) +∇L(θ)T (θ +∆θ − θ) +
1

2
(θ +∆θ − θ)T∇2L(θ)(θ +∆θ − θ)

(2.17)

= L(θ) +∇L(θ)T∆θ +
1

2
∆θT∇2L(θ)∆θ (2.18)

= L(θ) + gT∆θ +
1

2
∆θTH∆θ. (2.19)
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This gives our quadratic model m in terms of ∆θ. We refer to this as m(∆θ) in this case
as ∆θ is our step here that we want to find, though we note that this can be generalised
to any step p. If H is positive definite, we then have a strictly convex quadratic function
that we easily find the minimum of and thus solve for ∆θ. We do this by taking the
derivative of the quadratic model with respect to ∆θ and setting it to zero (Nocedal and
Wright, 2006).

0 = ∇∆θ

(
L(θ) + gT∆θ +

1

2
∆θTH∆θ

)
(2.20)

= g +H∆θ. (2.21)

Now, we solve for ∆θ, in which we get that:

∆θ = −H−1g. (2.22)

This is known as the Newton step (Nocedal and Wright, 2006; Boyd and Vandenberghe,
2004; Deisenroth et al., 2020). In the context of an optimisation algorithm, we itera-
tively solve for ∆θt by considering our model mt(∆θt) at an iteration t with our current
parameters θt. This gives us Newton’s method (Nocedal and Wright, 2006; Boyd and
Vandenberghe, 2004; Deisenroth et al., 2020).

Solve mt(∆θt) for ∆θt (2.23)

∆θt = −H−1
t gt, (2.24)

θt+1 = θt +∆θt. (2.25)

where Ht is the Hessian evaluated at θt and gt is as defined in Eq. (2.13).

The quadratic model and Newton’s method are central to second-order optimisation
methods. In particular, they offer a few key advantages over first-order methods.

• Local Curvature: The quadratic model incorporates a more sophisticated under-
standing of the local curvature of the optimisation landscape compared to the
gradient used by first-order methods, allowing for more informed steps.

• Analytical Solution: The quadratic model can be minimised analytically with re-
spect to ∆θ. This gives a candidate for the optimal step.

• Scale Invariance: The Newton step is scale-invariant. This means its performance
is not adversely affected by linear rescaling of the parameters θ (Nocedal and
Wright, 2006). This is because it rescales the problem space through the use of
H−1, which naturally adapts to the local curvature of the objective function. We
show an example of this with the Rosenbrock function in Fig. 2.11. This property
makes Newton’s method very effective for ill-conditioned problems, as mentioned
before in Sec. 2.2.4. It can navigate elongated valleys or surfaces with disparate
scaling across more effectively than first-order methods.
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• Quadratic Convergence: The Newton step exhibits quadratic convergence (No-
cedal and Wright, 2006; Boyd and Vandenberghe, 2004). Given that H is positive
definite, this means we can converge quadratically to a local minimum if we are
sufficiently close to it. This is much faster than first-order methods which have
linear or sub-linear convergence rates (Nocedal and Wright, 2006; Boyd and Van-
denberghe, 2004; Deisenroth et al., 2020).

(a) Trajectory of steepest descent on the Rosen-
brock function with α = 0.01.

(b) Trajectory of Newton’s method on the Rosen-
brock function.

Figure 2.11: Steepest descent and Newton’s method on the Rosenbrock function for 10
steps. We see that the optimising using steepest descent direction makes
slow progress, while Newton’s method converges quickly in the first few
steps.

However, despite these advantages, second-order methods face challenges in deep learn-
ing. This is primarily due to their computation cost. The first challenge is the storing
the Hessian matrix H. As H is an N × N matrix, it requires O(N2) space to store
(Goodfellow et al., 2016). This is infeasible to compute with large-scale models, which
are very common in deep learning. The second challenge is the computation of H−1,
required for methods such as Newton’s method. This requires O(N3) computation time.
Additionally matrix inversion is difficult to parallelise and thus is not as friendly on mod-
ern GPU hardware (Goodfellow et al., 2016). This is significant since most of modern
deep learning relies heavily on GPU parallelisation and distributed computing (Paszke
et al., 2017). As such, the difficulty of pure Newton-style methods makes it impractical
for large-scale deep learning. We note that this does not mean methods that rely on the
quadratic approximation or inverse Hessian are useless, as there exist tractable methods
that approximate them to capture local curvature. We discuss these in Section 2.4 and
Chapter 3.

Beyond computational demands and their constraints, there is one significant problem
with the Newton method, which is that it is attracted to saddle points (Dauphin et al.,
2014). Consider the classic horse saddle f(x, y) = x2 − y2 as introduced in Fig. 2.3(a).
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To understand the behaviour of Newton’s method, we can examine how it acts along
each of the two principal directions.

• Along the x-axis, we have the component function g(x) = x2.

• Along the y-axis, we have the component function h(y) = −y2.

Suppose we minimise g(x) with Newton’s method. We get that the gradient is ∇g(x) =
2x and the Hessian is Hg = ∇2g(x) = 2 in the x-direction given we take the derivatives
with respect to x. Then, the inverse Hessian is 1

2 . For a point x0, we compute the
Newton step to get the next iterate x1 as follows:

x1 = x0 +∆x = x0 −H−1
g ∇g(x0) = x0 −

1

2
· 2x0 = 0. (2.26)

This correctly moves us to the local minimum of g(x) at x = 0, and we only take one
step to do this which demonstrates the fast convergence of Newton’s method, especially
given that g(x) is convex.

Now, we consider the behaviour along the y-axis for h(y). The gradient is ∇h(y) = −2y
and the Hessian is Hh = ∇2h(y) = −2 in the y-direction given we take the derivatives
with respect to y. The inverse Hessian is now −1

2 . For a point y0, if we compute the
Newton step to get y1, we observe the following.

y1 = y0 +∆y = y0 −H−1
h ∇h(y0) = y0 −

(
−1

2
· −2y0

)
= y0 − y0 = 0. (2.27)

In this case, the Newton step has taken us towards the local maximum of h(y) at y = 0.
We see that the Newton step actually goes in the wrong direction and does not minimise
the function, which would involve taking the negative gradient direction as is done with
gradient descent. As a result, our next set of iterates (x1, y1) are (0, 0), the exact point
that is a saddle for our original function f . If we then try to take a step from here, we
will still remain at (0, 0) as our gradient will be 0. Thus, we get stuck at the saddle
point. We illustrate this in Fig. 2.12.

This is because Newton’s method is attracted to saddle points when H is indefinite
(Dauphin et al., 2014). In this example, the eigenvalues of H correspond to being
λ1 = 2 and λ2 = −2. Intuitively, this means that along positive eigenvalue directions, the
Newton step correctly moves towards minima, but along negative eigenvalue directions,
it moves away from the minima. When H is instead negative definite, the Newton step
will move towards the local maximum instead as our function is locally concave at the
current point. This is a significant concern given the proliferation of saddle points we
discussed in Sec. 2.3.1.

While it may seem like Newton’s method and the quadratic model approximation are
not a good fit for deep learning, multiple variants have extended these core ideas and
have found success. These include damped Newton methods, Quasi-Newton methods,
and diagonal Hessian approximations (Nocedal and Wright, 2006; Liu et al., 2023). We
discuss these further in the next section and provide a detailed review in Chapter 3.

25



2 Technical Background

(a) The Newton step on the 2D
horse saddle function.

(b) The Newton step on the x-
axis component.

(c) The Newton step on the y-axis
component.

Figure 2.12: Newton’s method on the classic 2D horse saddle function. Given a starting
point (1.5, 1.5) in red, the Newton step is attracted towards the saddle
points at (0, 0) in blue. We see that for the x-axis component, it correctly
minimises the component function g(x), but for the y-axis component, it
moves away from the minima instead.

2.4 Methods for Tractable Curvature Exploitation

In this section, we discuss strategies that can incorporate curvature information while
being computationally tractable. We start by discussing Hessian-vector products in
Sec. 2.4.1. This is followed by an introduction to Krylov subspaces in Sec. 2.4.2 and
then trust-region methods in Sec. 2.4.3.

2.4.1 Hessian-vector Products

We saw previously in Sec. 2.3.3 that storing the Hessian matrix H or computing its in-
verseH−1 is infeasible in deep learning due to computational constraints. However, many
optimisation algorithms incorporate curvature information without explicitly forming
the Hessian. One way to do this is through Hessian-vector products (Pearlmutter, 1994;
Dagréou et al., 2024).

Definition 24 (Hessian-vector Product). Given a loss function L(θ) with parameters
θ ∈ RN , the Hessian-vector product of H = ∇2L(θ) with a vector v ∈ RN is defined as:

Hv = ∇2L(θ) · v, (2.28)

where Hv ∈ RN .

We abbreviate Hessian-vector products as HVPs from here onwards. Intuitively, the
HVP captures how g changes when we move in a specific direction v. It captures the
local curvature of the optimisation landscape in this direction. The key insight is that we
can compute HVPs efficiently without explicitly formingH by considering the directional
derivative of g with respect to v. Instead of requiring O(N2) time and space, HVPs can
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be computed with only two gradient evaluations (Pearlmutter, 1994; Dagréou et al.,
2024; Martens et al., 2010). This is known as Pearlmutter’s trick.

Definition 25 (Pearlmutter’s Trick for Efficient HVPs). The HVP is the directional
derivative of g in the direction v,

Hv = lim
ϵ→0

1

ϵ
[∇L(θ + ϵv)−∇L(θ)] = ∇[⟨∇L(·), v⟩](θ), (2.29)

where ⟨·, ·⟩ denotes the standard Euclidean inner product. See that this follows from the
standard definition of the directional derivative for differentiable functions.

Based on this identity, HVPs can be computed efficiently with automatic differentiation
systems using only O(N) computation and storage (Paszke et al., 2017). This makes
them comparable to standard gradient calculations. HVPs are valuable for deep learning
optimisation as they provide access to curvature information while remaining computa-
tionally tractable. Modern deep learning frameworks implement HVPs efficiently using
automatic differentiation modes such as forward-mode and reverse-mode (Paszke et al.,
2017; Henriques et al., 2019). This allows for easy integration with deep learning tasks.

HVPs form the foundation of many iterative algorithms. We discuss these more generally
in Chapter 3, and in the next section introduce the notion of Krylov subspaces, which
leverages matrix-vector products like HVPs to allow for efficient optimisation.

2.4.2 Krylov Subspaces

In Sec. 2.3.1, we discussed the challenges of the high-dimensional landscapes present in
deep learning. In Sec. 2.3.3, we followed this by discussing the problem of evaluating
H or H−1. We now introduce Krylov subspaces, which are a powerful iterative method
that addresses these challenges (Nocedal and Wright, 2006; Gutknecht, 2007).

Consider a general linear system Ax = b where A ∈ RN×N , and x, b ∈ RN . In a
high-dimensional system where N ≫ 1, solving this is difficult and often intractable.
An example of this is the Newton step, ∆θ = H−1g, where we outlined this as a core
limitation in the previous section. However, one way to approximate them is to replace
the N -dimensional space with a much lower dimensional space M where M ≪ N . This
is the essence of Krylov subspaces.

Definition 26 (Krylov Subspace). Given an N × N matrix A and a vector u ∈ RN

where u ̸= 0, we define the M -th Krylov matrix KM ∈ RN×M as

KM (A, u) =
[
u Au A2u · · · AM−1u

]
. (2.30)

Then, the subspace spanned by the columns of KM (A, u) is called the M -th Krylov
subspace, KM (A, u):

KM (A, u) = span{u,Au,A2u, . . . , AM−1u}. (2.31)
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Generally, KM , which is the rank of KM , equals M , though it may be smaller (Dagréou
et al., 2024). Krylov matrices and their subspaces possess the following mathematical
properties.

Definition 27 (Properties of Krylov Matrices and Krylov Subspaces). Given the M -
th Krylov matrix KM (A, u) and the M -th Krylov subspace KM (A, u) generated by
A ∈ RN×N and u ∈ RN , if we have an x ∈ KM , then following properties hold:

• x = KMz for some z ∈ RM .

• x ∈ KM+1.

• Ax ∈ KM+1.

• KM ⊆ KM+1, and so Krylov subspaces are nested.

The appeal of generating KM lies in its reliance on matrix-vector products Av, which
can be computed efficiently. In general, the Krylov subspace can be stored with O(MN)
space for a Krylov dimension M (Nocedal and Wright, 2006; Paszke et al., 2017). We
can now solve our original problem Ax = b by equivalently replacing x with KMz as
described above.

min
x∈KM

∥Ax− b∥ = min
z∈RM

∥A(KMz)− b∥ = min
z∈RM

∥(AKM )z − b∥. (2.32)

This is a much lower dimensional problem which we can solve efficiently. Note that the
natural seed vector for this problem is b, and so we can equivalently solve this in the
Krylov subspace KM (A, b).

While the columns of KM in Eq. (2.30) form a basis for KM , the basis is often ill-
conditioned. This is especially the case as M increases. This is because repeated
matrix-vector products with matrix-powers Ak tend to concentrate in the direction of
the dominant eigenvector of A (Gutknecht, 2007).

Definition 28 (Dominant Eigenvector of Matrix-Powers). Given a matrix A ∈ RN×N ,
suppose we have eigenvalues λ1, λ2, λ3, . . . , λN such that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λN |. (2.33)

Then, for any vector u ∈ RN , Aku is eventually a scalar multiple of the dominant
eigenvector of A as k →∞. The dominant eigenvector is the vector associated with the
largest magnitude eigenvalue, λ1.

As such, when M is large, each basis vector Aku in our Krylov subspace KM is increas-
ingly parallel to the dominant eigenvector of A. The basis vectors are thus increasingly
linearly dependent and the condition number of KM deteriorates. To overcome this, we
instead construct the opposite of an ill-conditioned basis, an orthonormal basis for KM .
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Consider QR factorisation, which factorises a matrix A into an orthogonal matrix Q and
an upper triangular matrix R (Nocedal and Wright, 2006). We can then write KM as:

KM = QR(KM ) = QMRM = [q1, q2, . . . , qM ]


R11 R12 · · · R1M

0 R22 · · · R2M
...

...
. . .

...
0 0 · · · RMM .

 (2.34)

The vectors q1, q2, . . . , qM are the orthonormal basis for KM . By Definition 27, we know
that AqM ∈ KM+1, and therefore,

AqM = h1Mq1 + h2Mq2 + · · ·+ hM+1,MqM+1 (2.35)

for some choice of the hiM coefficients. Using orthonormality, we have:

qTi (AqM ) = hiM , i = 1, . . . ,M. (2.36)

We can then solve for hM+1,M and qM+1 as these are the only unknowns in Eq. (2.35),
since we started by assuming that we know q1, . . . , qM . Given they appear as a product,
and we know that qM+1 is a unit vector due to orthonormality, they must be uniquely de-
fined by the other terms in the equation. This results in the Arnoldi iteration algorithm,
which computes QM (Gutknecht, 2007). We outline this below in Algorithm 2.

Algorithm 2: The Arnoldi Iteration

Input: Matrix A, vector u, Krylov dimension M
Output: Orthonormal basis QM for KM (A, u)

1 q1 ← u/∥u∥
2 for m = 1, 2, . . . ,M do
3 Find him for i = 1, . . . ,m using Eq. (2.36)
4 Compute v = (Aqm)− h1mq1 − h2mq2 − · · · − hmmqm via Eq. (2.35)
5 hm+1,m ← ∥v∥
6 qm+1 ← v/hm+1,m

The Arnoldi iteration iteratively constructs nested orthonormal bases for nested Krylov
subspaces. Although we have focused on finding QM , the hij , the coefficient values hij
are key. For j = 1, 2, . . . ,M in Eq. (2.35) we get that
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AQM = [Aq1 . . . AqM ]

= [q1 . . . qM+1]


h11 h12 · · · h1M
h21 h22 · · · h2M

h32
. . .

...
. . . hM,M

hM+1,M


= QM+1HM . (2.37)

We call this the fundamental identity of Krylov subspaces (Gutknecht, 2007). The matrix
HM is of size M +1×M and has a special structure where hij = 0 whenever i > j+11.
Note that generally speaking, although we have used the similar notation, HM is not
related to the Hessian H.

When we projectQM onto the original matrix A, we obtain a reduced systemQT
MAQM =

HM of size M ×M (Gutknecht, 2007). This is crucial as this acts as an approximation
to the original matrix A, and thus the eigenvalues of HM are approximations to the
eigenvalues of A. If we consider the case when A is the Hessian H, then we can use this
to approximate the Hessian eigenvalue spectrum and obtain local curvature information.
As the Krylov dimension M becomes closer to N , HM becomes a better approximation
of A (Gutknecht, 2007). This property makes Krylov subspaces very powerful for opti-
misation, as we can work in this reduced subspace while still obtaining a good solution
to our problem.

Krylov subspaces have been key in developing many successful numerical solvers and
deep learning optimisers. For example, the Krylov Subspace Descent algorithm can
construct sound approximations and incorporate local curvature to perform well in deep
learning tasks (Vinyals and Povey, 2012). We discuss these further in Chapter 3.

2.4.3 Trust-Region Methods

We finish this chapter by introducing trust-region methods, another class of second-order
optimisation algorithms that can utilise curvature information. Trust-region methods
use the quadratic model as we discussed in Sec. 2.3.3 to define a region around the
current iterate that they trust to be a good approximation of the objective function,
hence the name trust-region (Nocedal and Wright, 2006).

We discussed the quadratic model in Sec. 2.3.3 in the specific case of deep learning. We
defined it with respect to a loss function L(θ) and the model parameters θ using the
explicit Hessian H. We now define the quadratic model in the general case to use for
trust-region methods.

1This is usually the definition of an upper Hessenberg matrix. However HM is not square in our case
since it has an extra row. If we remove the last row, then it becomes an upper Hessenberg matrix.
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Definition 29 (General Quadratic Model). Given an objective function f : RN → R,
the quadratic model is the second-order Taylor expansion of f around a point x ∈ RN ,

m(p) = f(x) + gT p+
1

2
pTBp, (2.38)

where g = ∇f(x) is the gradient, and B is a symmetric matrix that usually approximates
the Hessian ∇2f(x).

If we consider f as the loss function L(θ) and p as ∆θ, then this is the same as Eq. (2.19)
when B = H. Trust-region methods employ this quadratic model to iteratively solve
a constrained optimisation problem that is the trust-region subproblem (Nocedal and
Wright, 2006). A constrained optimisation problem is one where we must adhere to
constraints on our parameters (Boyd and Vandenberghe, 2004). Here, we optimise f
subject to the constraint that our step size ||p|| is less then a given trust-region radius
∆.

Definition 30 (The Trust-Region Subproblem). Given a function f : RN → R and a
trust-region radius ∆ > 0, the trust-region subproblem is to find a step p that solves

min
p∈RN

m(p) subject to ∥p∥ ≤ ∆, (2.39)

where ∥ · ∥ is usually the Euclidean norm.

The trust-region radius ∆ controls the maximum size of our step p. It represents the
region in which we trust our quadratic model to be a good approximation of the objective
function. If ∆ is too small, then we make little progress. If ∆ is too large, our quadratic
model we may overshoot and take a poor step. When we take a step p, we consider
the ratio between the actual and prediction reduction in the objective function (Nocedal
and Wright, 2006). We denote this ratio as ρ.

ρ =
f(x)− f(x+ p)

m(0)−m(p)
=

actual reduction

predicted reduction
, (2.40)

For our step p, we want ρ to be always non-negative, as this guarantees that p is a
descent direction (Nocedal and Wright, 2006). We can characterise the behaviour of the
trust-region based on the value of ρ as follows:

• Rejection: If ρ is negative, then f(x+p) > f(x) and so our step does not minimise
the objective function. In this case, we reject the step (Nocedal and Wright, 2006).

• Acceptance and Expansion: If ρ is close to 1, then our model m is a good approx-
imation of f and we can accept p. If we also have that ∥p∥ = ∆, then we expand
our trust-region radius ∆ as this indicates that the step has reached the boundary
of our trust-region (Nocedal and Wright, 2006).

• Acceptance and Shrinkage: If ρ is close to 0, then our model is a poor approximation
of f and we should shrink our trust-region radius ∆ (Nocedal and Wright, 2006).
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To turn this into an optimisation algorithm, we iteratively solve the trust-region sub-
problem at the current iterate xt and update our trust-region radius ∆t. We illustrate
the algorithm in Algorithm 3.

Algorithm 3: Trust-Region Method

Input: Initial point x0, initial trust-region radius ∆0 > 0, maximum radius
∆̂ > 0, thresholds 0 < c1 < c2 < 1, reduction factor γ1 ∈ (0, 1),
expansion factor γ2 > 1, maximum iterations T

Output: Approximate local minimiser xT
1 x← x0
2 ∆← ∆0

3 for t = 0, 1, 2, . . . , T do
4 Construct the quadratic model mt(p) in Eq. (2.38)
5 Obtain pt by solving the trust-region subproblem in Eq. (2.39)
6 Compute the ratio ρt in Eq. (2.40)
7 if ρt < 0 then
8 pt ← 0
9 ∆← γ1∆

10 else if ρt < c1 then
11 ∆← γ1∆
12 else if ρt > c2 and ∥pt∥ = ∆ then

13 ∆← min(γ2∆, ∆̂)
14 xt+1 ← xt + pt

15 return xT

The core of this algorithm is the trust-region subproblem. We discussed the solution to
this in the deep learning case in Sec. 2.3.3 when B = H to compute the Newton step.
We also made an important note that the Newton step as a result of the quadratic model
is not always a descent direction when H is not positive semidefinite. We now adapt
this for the general case, in which we want to solve

(B + λI)p∗ = −g, (2.41)

where λ ≥ 0 and p∗ is the solution. As a result the following conditions must be met if
p∗ is the solution.

Definition 31 (Trust-Region Subproblem Conditions). If p∗ is the solution to Eq. (2.41),
then the following2 must be satisfied:

• ∥p∗∥ ≤ ∆.

• B + λI is positive semidefinite.

• λ(∆− ∥p∗∥) = 0.

2These are essentially the Karush-Kuhn-Tucker (KKT) conditions for the trust-region subproblem.
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These conditions characterise the exact solution, but solving this exactly is computa-
tionally expensive as discussed in Sec. 2.3.3. In practice, we use approximation meth-
ods. A popular approach for approximately solving the trust-region subproblem is two-
dimensional subspace optimisation, where we restrict ourselves to a low dimensional
subspace (Nocedal and Wright, 2006). We now have that

min
p∈S

m(p) subject to ∥p∥ ≤ ∆, (2.42)

where S = span{−g,B−1g} is the two-dimensional subspace (Nocedal andWright, 2006).
The first direction, −g, is the steepest descent direction which guarantees reduction.
The second direction B−1g is also a solution when B is positive definite. In the case
it is not, we can then change the subspace to be span{−g, (B + αI)−1g} where α ≥
λmin(B). Intuitively, this searches for a solution that is a linear combination of the
descent direction and the approximate Newton direction. Since we operate in subspace
of size 2, this becomes extremely inexpensive to solve. Subspace optimisation often is
close to the exact solution of Eq. (2.41). We can also extend two-dimensional subspace
optimisation to higher dimensions. For example, it may be beneficial to find a solution
within the subspace span{−g,B−1g, z} where z is an average of past gradients (known
as the momentum).

With appropriate choices of B, trust-region methods poses strong convergence guaran-
tees. These include:

• Global Convergence: Trust-region methods converge globally to stationary points
regardless of the starting point, given B is uniformly bounded and g is Lipschitz
continuous (Nocedal and Wright, 2006) 3.

• Protection against negative curvature: Given we have a model approximation that
we trust around a radius, we are protected against directions of negative curvature
that might cause to diverge. This is since we will always stop at the boundary of
the trust region.

• Second-order necessary conditions: When B = H, trust-region methods guarantee
convergence to points satisfying the second-order necessary conditions as seen in
Definition 10 (Nocedal and Wright, 2006).

• Superlinear or quadratic convergence: Trust-region methods achieve superlinear or
quadratic convergence rates near solutions satisfying second-order sufficient condi-
tions as seen in Definition 15, when using accurate Hessian approximations.

These properties make trust-region methods particularly useful in deep learning, as they
offer a good balance between rapid progress, stability, and computational efficiency.

In this chapter, we have covered a complete overview on the fundamentals of opti-
misation, optimisation in deep learning, and how to efficiently incorporate curvature

3A function is Lipschitz continuous if there exists a constant L such that the slope between any two
points is bounded by L, meaning the function cannot change too rapidly anywhere in its domain

33



2 Technical Background

information for optimisation algorithms. We now discuss these algorithms and perform
a comprehensive literature review of the state-of-the-art and foundational methods.
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Chapter 3

Literature Review

The work in this thesis is heavily inspired by the advances in deep learning optimisation.
In this chapter, we explore the major academic works that have played a significant role
in the field of optimisation. In Sec. 3.1, we provide an overview of first-order methods
and their categorisations. This is followed by a discussion of second-order methods and
their categorisations in Sec. 3.2. We then look at other techniques in the field, namely
non-smooth optimisation and meta-learning in Sec. 3.3 and Sec. 3.4. At the end of our
discussion for each group of works in these respective sections, we will compare and
contrast them to our own contributions, which are detailed in the next chapter.

3.1 First-Order Methods

In the previous chapter, we saw that an optimisation algorithm in deep learning finds a
set of model parameters θ∗ that minimises the loss function L(θ) introduced in Eq. (2.10).
We covered in Sec. 2.3.2 that first-order methods are characterised by computing the
first order ∇θL, or g, to use in optimisation. We now look at the different types of first-
order methods, including gradient-based methods, momentum methods, and adaptive
methods.

3.1.1 Gradient-Based Methods

Gradient Descent: One of the earliest methods deployed to solve such optimisation
problems is gradient descent (GD). We introduced the concept of steepest descent in
Sec. 2.3.2, where we saw the parameters being iteratively updated with a scalar multiple,
the learning rate αt, of the steepest descent direction, the negative gradient −g at each
step given an iteration t. This gives θt+1 = θt − αtgt. Recall that the learning rate
α controls the step size of each iteration (Ruder, 2016). GD gradually approaches a
local optimum of our loss function L, and given appropriate α, reaches this sub-linearly
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if the loss function is convex, converging linearly if it is strongly convex (Nocedal and
Wright, 2006). However, GD is expensive. In many machine learning tasks, the loss
function is evaluated with N samples, each with dimensionality D. Thus, GD requires
O(ND) per iteration to evaluate. This becomes infeasible very quickly as N and D scale,
and disallows online updates and limits model adaptability (Ruder, 2016). While some
parallelisation methods were proposed to combat this, the scalability issue still remains
(Alspector et al., 1992; Nocedal and Wright, 2006).

Stochastic Gradient Descent: To address the limitations of GD, stochastic gradient
descent (SGD) was proposed. Instead of evaluating g using all N , a random sample
n ∈ N is picked and instead a stochastic gradient ĝ, an unbiased estimate of the real
gradient, is computed to update θ (Robbins and Monro, 1951). SGD achieves the same
convergence rates as GD given L satisfies the same convexity conditions (Johnson and
Zhang, 2013; Nemirovski et al., 2009). Each iteration reduces from O(ND) to O(D)
given only one sample is used. This overcomes the disadvantage of GD in two ways:
online updates can be performed, and convergence can be accelerated, as an optimal θ
can be found using n << N samples (Johnson and Zhang, 2013; Nemirovski et al., 2009).
However, the stochastic gradients used in SGD are inherently noisy and fluctuate. These
fluctuations can be beneficial, as they allow SGD to jump from one place to another.
This behavior is particularly useful in high-dimensional spaces, where we introduced in
Sec. 2.3.1 that most local minima are approximately equal to global minima. If SGD
gets trapped in regions such as saddle points where it is hard to make progress, the
fluctuations can help escape them.

On the other hand, these fluctuations can also lead to large variance in the gradient
estimates (Sun et al., 2019). This can make the optimisation process unstable and slow
convergence. Convergence is also affected by the learning rate α. Setting a too low α will
slow convergence, and setting a too high α can hinder convergence all together, either
overshooting or oscillating at the minimum. Choosing a good α usually requires manual
tuning, which is arduous and compute heavy.

Mini-batch Stochastic Gradient Descent: The compromise between SGD and
GD resulted in mini-batch stochastic gradient descent (mini-batch SGD) (Robbins and
Monro, 1951). mini-batch SGD splits the N samples into m << N i.i.d batches (usu-
ally ranging from 64 to 256). θ is updated each iteration by with the stochastic batch
gradient based off one batch. Over time, all batches are processed. This reduces the
variance in the gradients and makes convergence more stable, which helps optimisation
speed, though we note that the α parameter is still needed. mini-batch SGD is now a
mainstream technique used for optimising machine learning models. To align with the
standard in the literature, we will refer to mini-batch SGD as SGD from now on.

Our work is different from pure gradient-based methods such as GD and SGD. In par-
ticular, our work does not only use the gradient direction, but incorporates this with
second-order information. Our step direction is instead a linear combination of the gra-
dient direction with other useful directions minimised in a trust-region framework. Our
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work also does not need a learning rate like these methods, as we calculate the coeffi-
cients from our trust-region framework. We note that our work is similar to SGD in that
we sample a mini-batch for each iteration to compute the relevant information.

3.1.2 Momentum Methods

Momentum SGD: Many works have been proposed to improve upon SGD, one of which
is momentum (MSGD) (Polyak, 1964). The momentum method augments SGD with a
momentum variable z, a decaying average of past gradients controlled by a momentum
factor β (Polyak, 1964; Henriques et al., 2019). The update is then performed using z
as,

zt+1 = βzt − gt (3.1)

θt+1 = θt + αzt+1. (3.2)

This encourages progress along consistent, but small gradient directions. MSGD can
converge faster, remains more stable under changing α, and is more resistant if our loss
function is poorly scaled. However, this adds another hyperparameter to tune, and the
same problems as seen with α arise. Setting a β too low will not result in improvements,
and setting it too high can result in overshooting.

Nesterov Accelerated SGD: A small improvement over MSGD is Nesterov-Accelerated
SGD (NAG). NAG first updates θ with z, and then calculates the gradient based on the
updated θ (Nesterov, 1983; Sutskever et al., 2013),

θ̃t = θt + βzt (3.3)

zt+1 = βzt −∇θF (θ̃t) (3.4)

θt+1 = θt + αzt+1. (3.5)

Updating based on the future position of θ includes more gradient information in com-
parison to traditional momentum, which can provide a better direction (Nesterov, 1983;
Dozat, 2016). NAG can also result in superlinear convergence when there is no stochas-
ticity (Nesterov, 1983; Sutskever et al., 2013).

Our work incorporates momentum, but it is different from pure momentum-based meth-
ods since we also incorporate second-order information. Additionally to emphasise again,
we do not need a learning rate like these methods. Our work uses second-order infor-
mation to complement the momentum and the gradient in a trust-region framework. As
such, our work has the benefit of momentum methods, while also having faster conver-
gence from the guarantees of second-order methods.

3.1.3 Adaptive Methods

AdaGrad: To tackle the problem of setting an appropriate α, adaptive methods that
adjust or scale α directly per parameter were proposed Duchi et al. (2011). The AdaGrad
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algorithm keeps a history of previous gradients and adjusts the learning rate dynamically
(Duchi et al., 2011). It accumulates the historical gradients via squaring, then scales the
current gradient (Duchi et al., 2011),

Vt =

√√√√ t∑
i=1

gi ⊙ gi (3.6)

θt+1 = θt + α
gt

Vt + ϵ
, (3.7)

where ⊙ denotes element-wise multiplication and the division is also performed element-
wise. Note that the ϵ term is added for numerical stability. The result of this is that
only an initial α needs to be set, as during each update the learning rate will adapt due
to scaling. Though, as t → ∞, Vt → ∞, and the learning rate is driven towards zero
as the denominator in the update term becomes very large (Ruder, 2016; Geoff, 2012;
Zeiler, 2012). This makes the parameter updates ineffective. This is especially the case
in non-convex settings and regions such as saddle points, as the learning rate will be
very quickly driven to zero before making sufficient progress.

RMSProp and AdaDelta: To address this, instead of accumulating all of the gradi-
ents, RMSProp takes inspiration from momentum (Ruder, 2016; Geoff, 2012). It uses
an exponential decaying moving average to weight the past squared gradients using a
decay parameter p (Geoff, 2012; Kingma, 2014). The update rule is then,

Vt =
√
pVt−1 + (1− p)g2t . (3.8)

This simulates having a window size w, where gradients outside of this window are
forgotten (Geoff, 2012; Kingma, 2014). It priorities more recent gradients and so the
learning rate is more stable and does not diminish with time. AdaDelta improves upon
this and also keeps track of the change in updates, ∆(θt), performed (Zeiler, 2012). This
results in

Ut =
√
pUt−1 + (1− p)(∆(θt))2. (3.9)

AdaDelta then uses these accumulative updates at each iteration to perform the actual
update which is

θt+1 = θt −
Ut−1

Vt + ϵ
gt. (3.10)

The key observation here is the absence of α. This is a step up from most SGD methods,
which require the α parameter. The algorithm is also suitable in non-convex settings
since there is no diminishing learning rate (Zeiler, 2012). However, the absence of α is
replaced with p and ϵ which still need to be tuned, though these are much less sensitive.

Adam: Perhaps the most successful algorithm for optimisation is Adaptive Moment
Estimation (Adam) (Kingma, 2014). Adam maintains two moving averages: one for the
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gradients themselves, mt, and the same Vt used in RMSProp/AdaDelta (Kingma, 2014).
Each of these have an associated decay term β1 and β2, which weight the gradients and
the history (Kingma, 2014).

mt = β1mt−1 + (1− β1)gt (3.11)

Vt =
√
β2Vt−1 + (1− β2)g2t (3.12)

m̂t =
mt

1− β1
t (3.13)

V̂t =
Vt

1− β2
t (3.14)

θt+1 = θt − α
m̂t

V̂t + ϵ
(3.15)

We call mt and Vt the first and second moment estimates respectively, with β1 and β2
being the first and second moment hyper-parameters (Kingma, 2014). Adam has a few
key advantages. It uses momentum and exponential decay to smooth out gradients,
which makes the optimisation process more stable. It also has bias correction applied
to m̂t and V̂t to allow for proper initialisation (Kingma, 2014). This ensures they are
not biased towards their starting estimates. This is important during early stages of
optimisation, as there is insufficient data to estimate the moments. Adam is stable and
effective in practice, and works well with both convex and non-convex loss functions.
Adam is the current state-of-the-art optimisation method in deep learning. However,
it lacks theoretical guarantees and convergence is not well understood (Reddi et al.,
2019). Adam has been shown to fail in simple one dimensional convex settings (Reddi
et al., 2019). It additionally needs two extra parameters, β1 and β2, in comparison to
traditional SGD, which need to be tuned.

Our work is similar in concept to these adaptive methods. While these methods ad-
just the learning rates based on historical gradient information, we instead use a trust-
region framework. The step sizes are determined by trust-region optimisation. We use
second-order information, and do not need a learning rate, or first and second moment
hyperparameters, and also have convergence guarantees.

3.1.4 Adam Variants

AdaMax: Several variants have been proposed to address Adam’s limitations. The first
variant is AdaMax. AdaMax replaces the L2 norm in Vt with the L∞ norm (Kingma,
2014). Specifically, instead of maintaining the average of the squared gradients Vt,
AdaMax keeps track of the maximum absolute value of the past gradients (Kingma,
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2014).

ut = max(β2 · ut−1, |gt|) (3.16)

m̂t =
mt

1− βt
1

(3.17)

θt+1 = θt − α · m̂t

ut
, (3.18)

where we do a component wise max and component wise division. Here, the second
moment estimate V̂t is replaced with ut. This is done to make the algorithm more
robust, as u1, u2, . . . , ut are influenced by fewer gradients and thus there is less noise.
This is especially the case for when the gradients are large and can become numerically
unstable (Kingma, 2014). Note that no bias correction is also needed for ut.

NAdam: Another variant of Adam is Nesterov Adam (NAdam), which extends Adam
with the NAG method seen in Sec. 3.1.2 (Dozat, 2016). NAdam uses the NAG update
by performing the Nesterov trick - in which the previous first moment is replaced with
the currently calculated first moment similar to NAG (Nesterov, 1983; Dozat, 2016).
Condensing the Adam update equations from Eq. (3.11) to Eq. (3.15) in Eq. (3.19), the
following update is changed from

θt+1 = θt −
α

V̂t + ϵ

(
β1m̂t−1 +

(1− β1)gt
1− (β1)t

)
(3.19)

to

θt+1 = θt −
α

V̂t + ϵ

(
β1m̂t +

(1− β1)gt
1− (β1)t

)
. (3.20)

Like NAG, NAdam uses the future position of θ to calculate the gradient and incorporate
more information in the update. NAdam has been shown to yield sizeable improvements
in performance in comparison to Adam on MNIST and Word2Vec tasks (Dozat, 2016).

AdamW: Decoupled weight decay regularisation, or AdamW, is a further variant of
Adam (Loshchilov, 2017). Normally, applying L2 regularisation in Adam involves ap-
pending the regularisation term to the gradient update as follows,

gt = ∇θF (θt) + λθt−1. (3.21)

However, upon rescaling, the effect of the regularisation is not properly accounted for
and large gt do not get regularised as much as they should (Loshchilov, 2017). To address
this, AdamW decouples the weight decay and applies it alongside the update.

θt+1 = θt − α

(
m̂t

V̂t + ϵ
+ λθt

)
. (3.22)

This is because in adaptive gradient methods, L2 regularisation in the gradient update is
not the same as weight decay - unlike SGD (Loshchilov, 2017). Adam is not effective with
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L2 regularisation, and so AdamW substantially benefits from this decoupling, improving
in performance on CIFAR10 and ImageNet-32 tasks (Loshchilov, 2017). AdamW is
widely used in practice and is also a current state-of-the-art optimisation method.

AMSGrad: A particularly well-known issue with Adam is the lack of convergence
guarantees. One limitation is that in certain scenarios, Adam aggressively increases the
learning rate, even when the algorithm is close to the optimum (Reddi et al., 2019). This
is because the second moment term Vt can grow indefinitely, and there is a very high
dependence on β2. For particular β2, highly suboptimal solutions can be reached in the
case of simple convex settings (Reddi et al., 2019).

AMSGrad modifies this by keeping a bound on V̂t by taking the maximum for the update
rule (Reddi et al., 2019).

V̂t = max(V̂t−1, Vt) (3.23)

This guarantees that the learning rate is not increased indefinitely, as each Vt is guaran-
teed to be non decreasing and at least as large as the previous Vt’s (Reddi et al., 2019).
By ensuring this, drastic and aggressive learning rate increases are prevented, and the
algorithm convergences better and is more stable. However, AMSGrad is still dependent
on β2, and cannot show convergence guarantees on any arbitrary β2 (Taniguchi et al.,
2024). Some works have demonstrated that problem dependent tuning of β2 can lead to
convergence, but this still requires manual tuning (Taniguchi et al., 2024).

ADOPT: To address the dependency of convergence on β2, ADaptive Gradient Method
with the OPTimal Convergence Rate (ADOPT) was most recently proposed (Taniguchi
et al., 2024). ADOPT shows that by modifying the update rules of Adam, convergence
can be attained for any β2 ∈ [0, 1]. The non-convergence of Adam can be attributed to
the Vt needing to be conditionally independent of the current gradient gt (Taniguchi et al.,
2024). In a normal Adam update as in Eq. (3.15), the conditional independence criteria
is not satisfied. This is because V̂t contains information about gt, and so convergence
breaks. ADOPT fixes this by modifying the order of the update and the normalisation
(Taniguchi et al., 2024). Specifically, the normalisation is applied to the current gradient
in a modified update rule of mt,

mt = β1mt−1 + (1− β1)
gt

V̂t−1 + ϵ2
. (3.24)

Here, the previous second moment, Vt−1 is used to ensure this conditional indepen-
dence with gt when scaling and so convergence is guaranteed. In practice, ADOPT
uses max(V̂t−1, ϵ) instead of V̂t−1 + ϵ2 for the normalisation for performance benefits
(Taniguchi et al., 2024). The parameter update is shortly applied after as

θt+1 = θt − α ·mt+1. (3.25)

ADOPT outperforms Adam, AdamW, and AMSGrad on MNIST and CIFAR10 image
classification tasks (Taniguchi et al., 2024). It achieves substantial improvements in large
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language model pretraining and finetuning tasks over Adam and the rest of the variants
as well (Taniguchi et al., 2024).

Our work presents a different paradigm from these Adam variants. While these variants
focus on the convergence and reliance on tuning, as we mentioned in the previous sec-
tion, our work does not need explicit learning rate and moment hyperparameters. Our
work has theoretical convergence guarantees due to our trust-region framework, whereas
these works address the problem of Adam’s convergence rather than exhibiting these
guarantees.

3.2 Second-Order Methods

As discussed in Chapter 2, first-order methods are effective for many optimisation prob-
lems, but fall short when the optimisation landscape is ill-conditioned or challenging.
We saw that second-order methods address these problems in Sec. 2.3.3, as they find or
approximate the Hessian H. We now discuss the different types of second order methods.

3.2.1 Newton and Quasi-Newton Methods

Damped and Regularised Newton Methods: We saw in Sec. 2.3.3 that while
Newton’s method offers rapid quadratic convergence, it may not produce a descent
direction, when the Hessian H is not positive definite or when far from a solution.
Damped and regularised Newton methods improve the robustness and global convergence
properties of the standard Newton step. Step-size damping introduces the learning rate
αt to scale the Newton direction, similar to first-order methods we saw in Sec. 3.1 (Sun
et al., 2019):

θt+1 = θt − αtH
−1
t gt. (3.26)

The step length αt is typically chosen using a line search at each iteration to ensure
sufficient decrease. This prevents overly aggressive steps and improves stability. Another
approach is regularisation damping. Instead of scaling the step, this method modifies
the Hessian matrix Ht directly to ensure it is sufficiently positive definite. A common
technique is to add a constant λ to the eigenvalues of Ht before inversion. This yields
the update:

Ht = V ΛV T (3.27)

Bt = (V (Λ + λI)V T )−1 (3.28)

θt+1 = θt −Btgt. (3.29)

This damps the eigenvalues of Ht, ensuring the modified Hessian is well-conditioned.
The parameter λt can be adjusted adaptively,and instead of adding, we can scale the
eigenvalues of Ht. As we noted in Sec. 2.4.3, this formulation is closer to the solution of
the trust-region subproblem. Both damping strategies enhance the reliability of New-
ton’s method, making it more applicable to the non-convex landscapes. However, we
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note that the computational cost is still a problem. With regularisation damping, we
need to explicitly perform an eigendecomposition of Ht and then reconstruct our modi-
fied Hessian. This is intractable for large Ht as the eigendecomposition is O(N3). Thus,
while these methods increase the stability of Newton’s method while maintaining the
convergence properties, the computation intractability still remains.

BFGS: We address the computational infeasibility of Newton methods with Quasi-
Newton methods. Quasi-Newton methods compute an explicit approximation of the
Hessian, rather than computing it directly. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm generates a sequence of matrices to estimate the Hessian (Nocedal
and Wright, 2006). It iteratively refines the estimate using gradient information and
rank-two updates at each iteration (Nocedal and Wright, 2006). The estimate is always
positive-definite. Through experimental testing and analysis, these estimates are quite
good. BFGS also has effective self-correcting properties. If an estimate becomes poor
at one iteration, within the next few it will correct itself (Nocedal and Wright, 2006).
BFGS reduces the complexity to O(N2) for computation time (Nocedal and Wright,
2006; Sun et al., 2019).

A common variant of BFGS, Limited BFGS (LBFGS), reduces the memory requirement
by storing k vectors instead of retaining the full n × n approximations (Nocedal and
Wright, 2006; Sun et al., 2019).

SR1: The Symmetric Rank-One (SR1) method further tackles the infeasibility problem.
It approximates the inverse Hessian using the difference between a history of gradients
and positions, while ensuring symmetry in the update (Nocedal and Wright, 2006). The
key advantage of SR1 is that it uses only rank-updates, but also does not guarantee
positive definiteness (Nocedal and Wright, 2006). This makes it beneficial in non-convex
settings, where positive definiteness guarantee is hard to maintain. Albeit at the cost of
stability, it helps the algorithm capture more curvature information.

Stochastic Quasi-Newton with Trust Region: BFGS and SR1 methods can be
adapted into a stochastic setting with a trust-region framework. sL-BFGS-TR and sL-
SR1-TR were proposed as methods following this setting. These methods compute the
Hessian approximation Dt at each iteration using either L-BFGS or SR1. This Dt is
then used in the second-order approximation of L to solve the trust-region subproblem.
Results for sL-BFGS-TR and sL-SR1-TR show that they are efficient and are able to keep
up with Adam on MNIST and CIFAR10 tasks (Yousefi and Mart́ınez, 2023). Specifically,
as batch size increases, these algorithms are faster than Adam on models such as LeNet,
ResNet and a 3C3L (3 Convolution 3 Linear) ConvNet (Yousefi and Mart́ınez, 2023).
Together with an effective mini-batch sampling strategy, sL-BFGS-TR and sL-SR1-TR
converge faster than Adam (Yousefi and Mart́ınez, 2023). This shows that Quasi-Newton
methods can be effective in deep learning, and can be used in a stochastic setting, even
if contrary to popular belief.

Our work differs from traditional Quasi-Newton methods like BFGS, LBFGS, and SR1
in its approach to curvature information. Our work instead directly utilises HVPs to
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build an approximation instead of using rank-one or rank-two updates. Our work also
incorporates momentum and the gradient in a trust-region framework to get our step
direction, instead of relying purely on the second-order approximation. Additionally,
while the sL-BFGS-TR and sL-SR1-TR methods use a trust-region, our approach is
different. We use subspace optimisation to solve the trust-region subproblem and to
find a linear combination of useful directions, whereas these methods instead use other
methods to solve the subproblem and instead maintain an explicit Hessian approximation
matrix.

3.2.2 Diagonal Hessian Estimation

AdaHessian: As Quasi-Newton methods aim to estimate the inverse Hessian, improve-
ments have been made to use diagonal hessian estimates as well. AdaHessian modifies
the second moment from Adam to use the squared diagonal estimate of the Hessian (Yao
et al., 2021).

D̂t ≈ diag(Ht) (3.30)

Vt =

√
β2Vt−1 + (1− β2)D̂tD̂t (3.31)

This brings down the space complexity to O(D), and makes it more feasible to use
incorporate second order information (Yao et al., 2021). Though, as a trade-off, an extra
backward pass is required per iteration. AdaHessian performs well in image classification,
NLP, and recommender system tasks (Yao et al., 2021).

Sophia: A more effective approach to using diagonal estimates was proposed by Second-
order Clipped Stochastic Optimisation (Sophia) (Liu et al., 2023). Sophia uses a diagonal
estimate of the Hessian as a preconditioner to the first moment in the update rule
alongside a clipping mechanism. This was motivated by heterogenous curvature in deep
learning models, in which traditional optimisers struggle with (Liu et al., 2023).

Sophia first computes the diagonal estimate of the Hessian, D̄t, every k iterations using
either the Hutchinson or Gauss-Newton-Bartlett estimation methods via an estimator
E (Liu et al., 2023).

D̂t = E(Ht) E ∈ {Hutchinson, Gauss-Newton-Bartlett} (3.32)

D̄t =

{
β2D̄t−k + (1− β2)D̂t if t mod k = 1,

D̄t−1 otherwise
(3.33)

This is then put into a clipping function that controls the worst case size update, in
which the update rule is

θt+1 = θt − α · clip( mt

max(γ · D̄t, ϵ)
, ρ) (3.34)

where clip(z, p) = max(min(z, p),−p) and γ, ρ are hyper-parameters that function as
a scaling factor and a clipping threshold respectively (Liu et al., 2023). We saw in
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Sec. 2.3.3 that incorporating second-order information through the Newton step can
result in moving in the wrong direction. To counter this, Sophia considers only the
positive entries of D̄t, and clips each coordinate to a maximum step size of p (where p = 1
usually) (Liu et al., 2023). If any entry of D̄t is negative, Sophia falls back to momentum
signSGD. This is a method in which the update is scaled by the sign of the gradient
for each component, ignoring the magnitude. This ensures that in the worst case, the
update is controlled with a size of p, improving stability. On language modelling tasks,
Sophia converges quicker and achieves better performance in comparison to AdamW Liu
et al. (2023).

Our work is different since it utilises curvature information from Hessian-vector products,
instead of relying on diagonal Hessian estimates. However, it is similar in that we use
a clipping threshold to clip the eigenvalues of our Hessian approximation. We also can
optionally use diagonal estimates to precondition the vector used for the HVPs when
building our approximation. Our work is more stable than Sophia, as it offers a richer
representation of the local curvature. We also use a trust-region framework which these
works do not employ.

3.2.3 HVP-based Methods

Hessian-Free Optimisation: Hessian-free optimisation (HF) uses HVPs to incorpo-
rate second-order information (Nocedal and Wright, 2006; Martens et al., 2010). Similar
to Newton’s method, a search direction is computed by solving the following linear sys-
tem, where αt is a step size computed to guarantee sufficient decrease (Martens et al.,
2010).

Htdt = −gt (3.35)

θt+1 = θt − αtdt. (3.36)

The system in Eq. (3.36) is solved with the conjugate-gradient solver (CG), an iterative
method that solves linear systems. This computes the HVP without using the Hessian,
which reduces the space to O(N) and results in O(KN) time, where K << N controls
the number of iterations used for CG (Martens et al., 2010). However, the CG solver can
be very unstable when Ht is not positive definite. Thus, it breaks down when dealing
with noise and stochasticity. Ill-conditioned and non-convex problems also add to these
issues.

CurveBall: Combining fast HVPs and curvature information with the heavy-ball frame-
work was introduced with CurveBall, hence its name. CurveBall uses a quadratic ap-
proximation like the Newton method, and solves the optimisation problem by solving
the same linear system as in Eq. (3.36). Instead of using CG or matrix inversion, it uses
GD to optimise on dt and finds ∆dt Henriques et al. (2019).

∆dt+1 = Htdt + gt (3.37)

zt+1 = βzt − α2∆dt+1 (3.38)

θt+1 ← θt + α1zt+1 (3.39)

45



3 Literature Review

The advantage to this is that there is no restriction on H. The algorithm can work in
non-convex and ill-conditioned problems too, as demonstrated by it’s performance on
Rosenbrock and the Rahimi-Recht function (Henriques et al., 2019). The ∆dt variable
keeps track of how Ht and gt change as θ evolves, which incorporates the curvature. To
amortize cost, it interleaves updates between θ and ∆dt+1 (Henriques et al., 2019). With
the use of fast HVPs through forward-mode (FMAD) and backward-mode automatic dif-
ferentiation (RMAD), it requires only two passes of back-propagation (Henriques et al.,
2019), as we discussed in Sec. 2.4.1. This makes it highly efficient and scalable, in
which it demonstrates better performance on MNIST and CIFAR10 classification tasks
(Henriques et al., 2019).

Our method is similar to these works since the core of it is using HVPs. However, we
do not use CG or GD to optimise and solve the linear system present in Eq. (3.36).
The problem we solve is similar, but not the same as Eq. (3.36), as ours is a regu-
larised/damped version of it. We also solve this problem in a low dimensional subspace
generated through Krylov subspaces, and then compute useful search directions from
this and embed them in a trust-region framework.

3.2.4 Krylov Subspace Methods

Krylov Subspace Descent: Approximate solutions to optimisation problems in low
dimensional subspaces are also a popular strategy to involve curvature information.
Krylov Subspace Descent (KSD) constructs a basis of vectors Km and then finds a
search direction in Km using BFGS (Vinyals and Povey, 2012). The Krylov basis is
constructed with diagonal Hessian estimate preconditioning (Vinyals and Povey, 2012).

Km = {(D−1H)kD−1g| 0 ≤ k ≤ m} (3.40)

During optimisation, this subspace is converted into a new non-orthogonal subspace K̂m,
where BFGS is run to find to K̂v as the search direction, where K̂ ∈ K̂m (Vinyals and
Povey, 2012). KSD exhibits lower training error and faster running time in comparison
to HF on MNIST (Vinyals and Povey, 2012). It also has no assumptions on H, unlike
HF which has stability issues if H is not positive semidefinite.

Our method is quite similar to Krylov Subspace Descent. Both approaches construct a
low-dimensional subspace using HVPs, but the subsequent utilisation of this subspace
differs. KSD applies an optimiser like BFGS within the generated Krylov subspace to
find a search direction. In contrast, our method instead embeds search directions found
within this subspace alongside the gradient and the momentum in a trust-region. We
thus derive our update from the trust-region rather than directly optimising within the
initial Krylov subspace.
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3.3 Non-smooth Optimisation

For some problems, there may be conditions on the loss function such that it is non-
smooth and that g is intractable to calculate. We now look at optimisation methods
that address this case.

Coordinate Descent: Coordinate Descent (CD) aims to perform one dimensional
search across along each axis direction of θ, till all directions are chosen properly to
find optimal θ. Naively, a set of bases E = e1, ..., eD are chosen where D = dim(θ).
The parameter space is broken down into individual dimensions or coordinates, and
optimization proceeds along each direction sequentially (Conn et al., 2009). As such,
the update at the jth dimension is given by

θt+1
j = arg min

θj∈R
L(θt+1

1 , . . . , θt+1
j−1, θj , θ

t
j+1, . . . , θ

t
D). (3.41)

This guarantees convergence, as L is set to decrease or stay the same at each iteration,
and the convergence of CD is similar to that of GD (Conn et al., 2009). The main
difference to GD is that each update is always axis aligned, whereas the g in GD may
not be aligned with any e ∈ E. Given the algorithm focuses on one dimension at a time,
the update is simple, even for complex problems. It is useful for in settings where there
is low D or sparse structures. While highly impractical for deep learning settings, as D
is high and we are not given the sparsity structure, setting a coordinate basis may be
beneficial to accelerate convergence.

Our method primarily targets smooth objective functions, as is the case for most deep
learning tasks. The specific challenges of non-smooth optimisation are outside its direct
scope. We do note that the iterative improvements are shared, as our method generally
improves in decreasing the objective function in each iteration. While our method does
not target non-smooth objective functions, reformulating it into a smooth approximation
may work.

3.4 Meta-Learning Discovery

A new way to solve optimisation problems is to consider abstracting away the prob-
lem. Meta-learning discovery aim to formulate algorithm search such that optimisation
methods are found as a result.

Lion: EvoLved Sign Momentum (Lion) was discovered via a meta-learning approach
(Chen et al., 2024). It uses momentum and the sign operation to update parameters.

update = sign(β1mt−1 + (1− β1)gt) (3.42)

θt+1 = θt − α · update (3.43)

mt = β2mt−1 + (1− β2)gt (3.44)

Unlike adaptive methods, there is no second moment Vt, and so no normalisation on
the first moment is performed. Thus, Lion contributes a fixed size update to θ at each
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iteration, only scaling by the output of the sign function. This is similar to signSGD,
mentioned in Sec. 3.2.2 under Sophia. Lion is advantageous given that it is simple
and only tracks the momentum. This halves the memory requirement, making it more
efficient. Lion gains up to a 2.3x speedup on AdamW (Chen et al., 2024). It outperforms
AdamW on image classification, vision-language contrastive learning, diffusion modelling
and language modelling and pre-training tasks (Chen et al., 2024). However, we note
that this is the case only on transformer models that Lion is very effective. Further
evaluations proving Lion’s effectiveness on non-transformer based models are needed to
confirm its effectiveness.

Our method is different entirely from the paradigm of meta-learning since we do not
formulate optimisation as an algorithm search. Our method is similar to Lion since we
use momentum, but we do not perform a signed update. We also do not use a learning
rate or momentum hyperparameters, as previously mentioned. We use HVPs and a
trust-region to approximate the local curvature, and our update step is a combination
of the momentum, gradient, and other useful directions.

In this chapter, we have covered in detail the major works for optimisation in deep
learning and how our work fits alongside them. We now introduce our work, KryBall,
in the next chapter.
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Chapter 4

The KryBall Optimisation Algorithm

In this chapter, we present our method, the KryBall optimisation algorithm. We first
introduce the concept of the Saddle-Free-Newton that our method builds upon on in
Sec. 4.1. We then present our algorithm, which includes core components such as Krylov
subspace construction, the computation of the Saddle-Free-Newton, and a trust-region
framework. This is detailed in Sec. 4.2. We then present the main algorithm in Sec. 4.3.

4.1 Saddle-Free-Newton

We build upon a key work in optimisation, the Saddle-Free-Newton (SFN) method
(Dauphin et al., 2014). Recall in Sec. 3.2, we showed that the pure Newton method
can be attracted to saddle points due to optimising in a non-convex setting. To address
this problem, the SFN method was proposed (Dauphin et al., 2014). The SFN is es-
sentially a regularised Newton method, similar to that of Damped Newton methods we
saw in Sec. 3.2.1. However, instead of applying step-size or regularisation damping, the
SFN method instead applies the | · | (abs) function onto the eigenvalues of the Hessian
Dauphin et al. (2014). This results in an adjusted Hessian which is guaranteed to be
positive semi-definite, and thus avoids being attracted to saddle points.

Definition 32 (Saddle-Free-Newton Step). Given a Hessian H and a gradient g evalu-
ated at our current parameters θ, we define the Saddle-Free-Newton step ∆θSFN as:

H = V ΛV T (4.1)

HSFN = V |Λ|V T (4.2)

∆θSFN = −(HSFN )−1g, (4.3)

where Λ is the diagonal matrix of eigenvalues, and | · | is the element-wise absolute value
applied to each element of Λ.

49



4 The KryBall Optimisation Algorithm

Figure 4.1: The crux of the SFN step: A non positive-semi-definite H is now be guaran-
teed to be positive semi-definite as we manipulate the curvature information
by applying | · | to the eigenvalues Λ of H to form HSFN .

We use the notation ∥H∥ and HSFN interchangeably to refer to the reconstructed Hes-
sian that is now guaranteed to be positive semi-definite. We illustrate this change in
Fig. 4.1.

As an example, consider once again our 2D horse saddle function from Sec. 2.3.3. Recall
we split the problem into two cases to optimise: g(x) = x2 and h(y) = −y2. We
computed that Hg = ∇2g(x) = 2 in the x-direction and Hh = ∇2h(y) = −2 in the
y-direction given our starting iterates (x0, y0) = (1.5, 1.5). Our problem with Newton’s
method was that Hh had a negative eigenvalue, which made our Hessian indefinite and
thus in the y-direction, we moved towards the local maximum instead. Now, we consider
the SFN step and its behaviour.

• In the x-direction, we have Hg = 2. Applying | · | to the eigenvalues, we get
HSFN = 2. This is the same as the Newton step, which behaves correctly for this
case, so x1 = 0.

• In the y-direction, we have Hh = −2. Applying | · | to the eigenvalues, we get
HSFN = 2. Now, we have that

y1 = y0 +∆y = y0 − (HSFN )−1∇h(y0) = y0 −
1

2
· (−2y0) = y0 + y0 = 2y0. (4.4)

Given we have y0 = 1.5, our next iterate is y1 = 2 · 1.5 = 3. This is the correct
behaviour, and we have successfully moved away from the saddle point and follow
the negative gradient direction.

As a result, our next set of iterates (x1, y1) = (0, 3) now evaluates to f(0, 3) = −9. Thus,
we have moved away from the saddle point. Subsequently applying more SFN steps will
optimise f more until we diverge, since the function is unbounded. We illustrate our
discussion in Fig. 2.12.

However, while the SFN method addresses the issue, the core limitation is still the
computational intractability. To compute the SFN, we must do an eigendecomposition
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(a) The SFN step on the 2D horse
saddle function.

(b) The SFN step on the x-axis
component

(c) The SFN step on the y-axis
component,

Figure 4.2: SFN on the classic 2D horse saddle function. Unlike the Newton step, the
SFN step is not attracted to the saddle points. Given a starting point
(1.5, 1.5) in red, the SFN step is able to move away from the saddle point and
decrease the objective function. For both the x-axis and y-axis components,
the SFN step is able to move in the correct direction.

of the Hessian, apply our abs function, reconstruct it, and then take the inverse. This
sequence of steps is infeasible for deep learning.

4.2 Components of KryBall

This raises the question: how can we compute the SFN step efficiently, especially given
the proliferation of saddle points? We thus introduce KryBall, a method that extends
the SFN method and uses its advantages while being computationally tractable for deep
learning. KryBall is a second-order method that uses Krylov subspaces, the SFN step,
and a trust-region framework. At its core, KryBall consists of two main components:

• SFN Computation: The efficient computation of the SFN step direction.

• Trust-Region Framework: The integration of the SFN step and other useful
components into a generalised trust-region framework.

In this section, we detail these two core components. We first discuss how to compute
the SFN step direction in Sec. 4.2.1. We then present how we integrate this into a
trust-region framework in Sec. 4.2.2. Finally, we present our main algorithm in Sec. 4.3.

4.2.1 Computation of the Saddle-Free-Newton

We introduced Krylov subspaces in Sec. 2.4.2. We now use them to their best ability
in our method. Instead of computing and storing the full Hessian, we can generate a
Krylov subspace with the Hessian H and the gradient g. This gives us

KM (H, g) = span{g,Hg,H2g, . . . ,HM−1g}. (4.5)
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Recall that the Arnoldi iteration not only generates an orthonormal basis QM for
KM (H, g), but also the coefficient matrix HM . We know that this is a projection of
the original space that we work in. That is, we have the following relationship,

QT
MHQM = HM , (4.6)

where HM is the projected Hessian. Thus, we now have a low-dimensional approximation
of our original space H through the projected Hessian HM . We then use this to compute
the SFN step direction.

HM = VMΛMV T
M (4.7)

HSFN
M = VM |ΛM |V T

M (4.8)

∆θSFN = −(HSFN
M )−1q0, q0 =

g

∥g∥
, (4.9)

The gradient projected into this subspace is gM = QT
Mgt. Since q0 = gt/∥gt∥2, gM is

simply ∥gt∥2e1, where e1 is the first standard basis vector in RM . Note that we assume
HM is symmetric here even though we have not explicitly assumed this in our Arnoldi
iteration. For this case, we do not use the last row of HM and thus our HM goes from
being a M + 1×M + 1 matrix to a M ×M matrix. We do this since we only need the
first M eigenvalues of HM to compute the SFN step. After we compute the SFN step,
we then project it back into the original space as follows,

∆θSFN = QM∆θSFN . (4.10)

We now have our SFN direction that we can use to optimise our model. In KryBall,
we offer an almost one to one implementation of this. However, we make one slight
modification and add a clipping parameter ϵ for numerical stability. This ensures that the
step direction and norm are not too large, and thus we do not diverge from the original
space. We perform the clipping after we apply the abs operator to the eigenvalues.
Formally, we write this as,

HSFN
M = VMclip(|ΛM |, ϵ)V T

M (4.11)

∆θSFN = −(HSFN
M )−1q0, (4.12)

where the clipping function clip(x, ϵ) clips any eigenvalues of HM that are less than ϵ to
ϵ.

4.2.2 N-Dimensional Subspace Optimisation

Having computed the SFN direction ∆θSFN , we now integrate into a robust step se-
lection procedure using N -dimensional subspace optimisation. We introduced briefly
2D subspace optimisation in Sec. 2.4.3. The general principles are extended to the
N -dimensional case.
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We define a search subspace Sk as a k-dimensional subspace that is spanned by a set of k
direction vectors. These vectors are chosen to capture both first-order and approximated
second-order information about the optimisation landscape. Typically, the basis vectors
for Sk include:

• The normalised current gradient: gt/∥gt∥2.

• The normalised SFN direction: ∆θSFN/∥∆θSFN∥2, as computed in Sec. 4.2.1.

• The normalised momentum vector: zt/∥zt∥2.

Let Xt = [x1, x2, . . . , xk] be the matrix whose columns are these k orthonormalised basis
vectors. Any potential step pt from the current iterate θt is therefore restricted to this
subspace, meaning pt = Xtα for some coefficient vector α ∈ Rk.

The core of the trust-region method is to minimise a quadratic model mt(p) of the loss
function L(θt + p) within this subspace Sk, subject to the constraint that the step pt
remains within a trust region of radius ∆t. The quadratic model is given by:

mt(p) = L(θt) + gTt p+
1

2
pTHtp. (4.13)

Substituting p = Xtα, the subproblem becomes finding α∗ that solves:

min
α∈Rk

(XT
t gt)

Tα+
1

2
αT (XT

t HtXt)α (4.14)

subject to ∥Xtα∥22 ≤ ∆2
t . (4.15)

Let bk = XT
t gt be the projection of the gradient onto the subspace directions, and

Ak = XT
t HtXt be the projection of the Hessian onto the subspace. We can compute

Ak efficiently using HVPs Htxi for each basis vector xi in Xt. The objective function in
Eq. (4.14) then simplifies to bTk α+ 1

2α
TAkα.

This k-dimensional trust-region subproblem is solved to find the optimal coefficients
α∗. The resulting step in the full parameter space is p∗t = Xtα

∗. We then follow suite
with the standard trust-region algorithm and update our radius based on the reduction
ratio. If we cannot ensure sufficient reduction, we reject the step and adapt our radius
accordingly and try again. This ensures that the algorithm adapts to the reliability of
the quadratic model, promoting stable and efficient convergence.

4.3 Main Algorithm

We now bring together the previously described components: the efficient computation
of the SFN direction via Krylov subspaces, and its integration into an N -dimensional
subspace optimisation using a trust-region framework. We present the complete KryBall
optimisation algorithm in Algorithm 4.

The algorithm iteratively builds a low-dimensional quadratic model of the objective func-
tion. It leverages curvature information approximated via the SFN direction computed
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Algorithm 4: The KryBall Optimisation Algorithm

Input: Initial parameters θ0, objective function L(θ), Krylov dimension M ,
trust-region parameters (initial radius ∆0, max radius ∆max ,
adaptation rules η1, η2), Krylov refresh rate rrefresh , momentum factor β

Output: Optimised parameters θ∗

1 Initialise θ ← θ0, trust-region radius ∆← ∆0

2 Initialise momentum vector z ← 0
3 for t = 0, 1, 2, . . . until convergence do
4 Compute current gradient gt = ∇L(θt)
5 if t (mod rrefresh) == 0 then
6 Construct orthonormal QM and HM from the Arnoldi iteration for

KM (Ht, gt)
7 Compute and normalise ∆θSFN

8 Define search subspace directions XS = [gt/∥gt∥2, zt/∥zt∥2]
9 if t (mod rrefresh) == 0 then

10 Add SFN direction ∆θSFN to XS

11 else
12 Add basis vectors of QM to XS

13 Project gradient bk = XT
t gt

14 Project Hessian Ak = XT
t HtXt

15 Solve the trust-region subproblem to find α∗

16 Compute candidate step pt = Xtα
∗

17 Compute the reduction ρt
18 Accept or reject the step based on ρt and ∥pt∥
19 Update ∆t+1 based on ρt, ∥pt∥, and ∆max

20 Update momentum vector zt+1 ← βzt + gt+1

21 θ ← θt+1, ∆← ∆t+1

22 return θ

within a Krylov subspace. An optimal step is then determined within this subspace us-
ing the trust-region framework, which adaptively adjusts the step size to ensure reliable
progress.

Note that we have a refresh parameter rrefresh which controls how often we update our
Krylov basis. This is primarily for efficiency reasons, as it is expensive to compute
the Arnoldi iteration every single time. As such, when we do not compute the Arnoldi
iteration, we leverage the basis vectors previously computed and add these into our trust-
region. In practice, we find that an appropriate choice of rrefresh is usually performant
even if it is not set to 1.
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4.3 Main Algorithm

In this chapter, we detailed the innerworkings of our method, the KryBall optimiser.
We discussed the need for methods like the SFN. We then introduced our core ideas of
efficiently computing the SFN and integrating it into a trust-region framework, resulting
in our algorithm. We now present an empirical evaluation of KryBall in the next chapter,
assessing its performance in a range of tasks.
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Chapter 5

Evaluation and Analysis

In this chapter, we present our evaluation, findings, and analysis of our method, the
KryBall optimisation algorithm. We start by discussing the implementation of KryBall
in 5.1. We then present the experimental setup in 5.2, which includes the datasets,
models, metrics, hyperparameter settings, and tasks to be evaluated. This is followed by
our results in 5.3, where we include our empirical evaluations and sensitivity analysis.
We then interpret our findings and do some further analysis in 5.4. Finally, we discuss
the limitations of our method in 5.5.

5.1 Implementation

Most machine learning workflows and tasks are implemented entirely in Python, and
leverage the PyTorch library (Paszke et al., 2017). This is because PyTorch has efficient
low-level kernels that allow for automatic differentation and tensor operations (Paszke
et al., 2017). We design our optimiser to be integrated seamlessly with PyTorch. As
such, KryBall can act as a drop-in replacement for other PyTorch optimisers in deep
learning tasks.

5.1.1 Adhering to the PyTorch Optimiser API

Our implementation adheres to the PyTorch optimiser API while simplifying the stan-
dard training workflow. In a typical training setup in PyTorch, users must explicitly call
the following functions (Paszke et al., 2017):

• .backward() to create the computation graph and the associated gradients.

• .zero_grad() to clear previous gradients.

• .step() to perform the optimisation step and update the model parameters.
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We instead consolidate these into just a single step function. This makes it cleaner than
the current workflow while maintaining full compatibility with the PyTorch ecosystem.

In addition, we provide an interpretable way to track necessary information. In Py-
Torch, optimiser parameters such as the momentum and adaptive learning rates are
associated with individual parameter blocks and buried within the optimiser’s internal
state dictionaries (Paszke et al., 2017). This makes it difficult to understand how they
behave during training. Our implementation exposes these quantities directly as accessi-
ble vectors, allowing researchers to easily inspect gradients, momentum terms, and other
optimisation variables. This facilitates deeper insights into the optimisation process and
enables more effective understanding and debugging.

5.1.2 Function Integration with PyTorch

We also introduce a novel test suite that integrates classic functions (Rosenbrock, 2D
Saddle, Monkey Saddle etc.) with PyTorch. Currently, most existing implementations
that offer direct optimisation of just functions do not integrate with PyTorch. Instead,
they all use numerical solvers and approximate the first and second-order derivatives.
This is because PyTorch workflows are primarily for deep learning, and simple function
optimisation is not a focus. To our knowledge, there exists only a few libraries that try
and integrate function optimisation with deep learning. However, these are outdated,
lack maintainability, and do not use modern PyTorch techniques such as model JIT
compilation to improve speed. We thus implement an easy way to optimise any function
with PyTorch optimisers such as SGD, Adam and LBFGS that adheres to the standard
training loop. We show an example in Algorithm 5.

Algorithm 5: Optimising a function with PyTorch optimisers

1 T = 100
2 model = Rosenbrock()
3 optimiser = torch.optim.LBFGS(model.parameters())
4 for t = 1, 2, . . . , T do
5 optimiser.zero grad()
6 loss = model()
7 loss.backward()
8 optimiser.step()

5.1.3 The Trust-Region Framework

A core contribution that we present is a novel implementation ofN -dimensional subspace
optimisation that solves the trust-region subproblem. To our knowledge, this is the
first general-purpose implementation tailored for deep learning applications within the
PyTorch ecosystem. Many trust-region frameworks either employ the dogleg method, or
2D subspace optimisation, but also are not integrated with PyTorch. We thus implement
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a general-purpose N -dimensional subspace optimiser that can be used with any PyTorch
optimiser, and more generally any task that involves the trust-region subproblem.

5.1.4 Loss Landscape Sampling

The final part of our contributions that we implement is the ability to inspect the
loss landscape of deep learning training tasks. We implement a sampler that can be
used to sample trajectories from the loss landscape of a deep learning model. Given a
particular point in training, our sampler can investigate the local geometry by performing
an exhaustive line search along the optimiser’s step direction. This allows researchers
to visualise and analyse the characteristics of the loss landscape in the vicinity of the
optimisation trajectory for a particular optimiser. We use this to analyse the trajectory
of optimisers for different deep learning tasks in Sec. 5.4.

5.2 Experimental Setup

To evaluate KryBall, we must first define a range of tasks that accurately reflect the
challenges faced by deep learning models. In this section, we define these tasks with
respect to the datasets, models, metrics, and hyperparameter tuning setups. We consider
the following tasks as our suite: ill-conditioned functions, binary classification, and image
classification.

5.2.1 Baselines

Before we introduce our tasks, we first define our baselines. We select MSGD and Adam
as our baseline optimisers. These are state-of-the-art first-order optimisers that we find
outcompetes other optimisers in literature. MSGD is a simple and foundational approach
that is well-suited for many deep learning tasks. Adam is more of a modern and practical
baseline, and has been the standard optimiser in practice ever since it was introduced.
We also use LBFGS as a second-order baseline, as it exhibits good performance across
many tasks and is also a popular optimiser in practice. However, we note that we only
use LBFGS where it is tractable, and so for the image classification task in Sec. 5.2.4,
we do not use LBFGS to remain consistent.

5.2.2 Task 1: Ill-Conditioned Function Optimisation

The first set of tasks involves minimising ill-conditioned objective functions. We choose
the Rosenbrock function and implement a noisy, stochastic variant of it, and the Rahimi-
Recht function, which we briefly mentioned in Sec. 2.2.4 of Chapter 2.
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Stochastic Rosenbrock Function

We implement a stochastic variant of the Rosenbrock function from Henriques et al.
(2019). We have that R : R2 → R:

R(x, y) = (1− x)2 + 100ϵi(y − x2)2, (5.1)

where at each evaluation of the function, a noise sample ϵi is drawn from a uniform
distribution U [λ1, λ2] with λ1 ≤ λ2. When λ1 = λ2 = 1, we can recover the determin-
istic Rosenbrock function with its well-known minimum at (x, y) = (1, 1). To assess
robustness to noise, we compare each optimiser on both the deterministic formulation
and two stochastic variants with different noise regimes.

Rahimi-Recht Function

The second function is an ill-conditioned linear regression problem introduced by Rahimi
and Recht (Rahimi and Recht, 2017). This involves training a neural network with two
linear layers to approximate a linear map with a high condition number. The objective
function is

L(W ) = ∥ŷ − ytrue∥2 = ∥WLWL−1 · · ·W1x−Ax∥2, (5.2)

where A is an ill-conditioned matrix with condition number κ, and Wi are the weight
matrices of the linear network. We construct the true linear map Atrue ∈ Rm×d with
singular values linearly spaced between 1 and κ (Rahimi and Recht, 2017). We generate
n = 1000 random input samples and compute the corresponding outputs using this
map. The behaviour of this function is that as we get closer to the minima, it becomes
increasingly ill-conditioned. Specifically, the eigenvalues of the Hessian tend towards
infinity.

Evaluation Setup and Metrics

We evaluate MSGD, Adam, LBFGS, and KryBall on the Rosenbrock and the Rahimi-
Recht functions with the following chosen ill-conditioning parameters:

• Deterministic Rosenbrock: λ1 = λ2 = 1.

• Stochastic Noisy Rosenbrock: λ1 = 0, λ2 = 1.

• Stochastic Noisy Rosenbrock: λ1 = 0, λ2 = 3.

• Slightly Ill-Conditioned Rahimi-Recht: κ = 10.

• Highly Ill-Conditioned Rahimi-Recht: κ = 1e5.

Each optimiser is tuned on each function for 20 sweeps, where each sweep has 100 epochs.
We describe in detail our hyperparameter tuning setup in Sec. 5.2.5. We then use the
best performing configuration for each optimiser, and then run all optimisers with a
budget of 2000 epochs until they converge within an ϵ of the solution or use up the
computational budget. For Rosenbrock, we choose ϵ = 1 × 10−4 and for Rahimi-Recht
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we choose ϵ = 1 × 10−2. Here, we are measuring the optimisers ability to converge to
the solution while handling noise and ill-conditioning.

5.2.3 Task 2: XOR Classification

The next task we consider is a simple case of binary classification with the XOR function.
This is a good task to bridge between the ill-conditioned functions and more complex
recognition tasks as it introduces non-linearity. The XOR task cannot be linearly sep-
arated, and needs a non-linear activation function. Our dataset is simple and small. It
includes all 4 combinations of inputs to the XOR function, a 2D vector of zeros and
ones, and the corresponding labels in which they evaluate to.

Evaluation Setup and Metrics

For this task, we use a simple MLP with 3 layers, consisting of one input layer, a hidden
layer with a hidden dimension of size 8, and an output layer. Our activation function
is the Softplus function, and our loss function is the Binary Cross Entropy (BCE) loss
(Mao et al., 2023). The BCE loss is defined as

L(y, ŷ) = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] , (5.3)

and measures the difference between the predicted probability distribution and the actual
distribution which consists of the ground truth labels for a binary classification task (Mao
et al., 2023). This is useful for the XOR case since our output is binary.

We test MSGD, Adam, LBFGS, and KryBall on this task. Each optimiser is tuned for
20 sweeps, each with 100 epochs like the previous task. We use the best performing
parameters, and then run each optimiser on the XOR task with a budget of 100 epochs.
Given this task is quite simple, and our chosen model is more than capable, we measure
the number of epochs it takes to converge. Our convergence criteria here is to reach
perfect accuracy, that is an accuracy of 1.0, and completely minimise the loss function
(reach 0 loss). This means we have perfectly predicted the XOR problem. In practice,
most models and most optimisers are capable of this, and thus we instead focus on
convergence speed.

5.2.4 Task 3: Image Classification

Our third and final task is a suite of image classification problems. Here, given an image
I that is usually either a binary image or an RGB image, we want to classify it into
one of C classes. We thus use a variety of datasets to formulate our image classification
problem.
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MNIST-1D

MNIST-1D is a scaled down one-dimensional version analogue of the classic MNIST
handwritten digit dataset (Greydanus and Kobak, 2020). It consists of 40-dimensional
time series signals that represent the handwritten digits from 0 to 9. These are con-
structed through procedural generation and involve random transformations such as
padding, translation and scaling operations (Greydanus and Kobak, 2020). There are
5000 total samples in MNIST-1D, where 4000 are allocated for training and 1000 for
testing (Greydanus and Kobak, 2020). Each example in MNIST-1D is labeled with its
corresponding digit class (0–9). This estbalishes a 10-class classification problem where
the ground truth represents the original digit template from which each signal was de-
rived.

CIFAR-10

CIFAR-10 is widely used dataset for image classification. It consists of 60000 RBG
images that are of size 32 × 32 × 3 (Krizhevsky et al., 2009). These are distributed
across 10 distinct object classes: irplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. The dataset comprises 50000 training images and 10000 test images
(Krizhevsky et al., 2009). Each class contains exactly 6000 images, where the train and
test split is 5000 and 1000 respectively. The ground truth for this dataset is a single-
label classification that indicates the primary object category present in each image
(Krizhevsky et al., 2009). In CIFAR-10, all images are labelled. We note that a superset
of CIFAR-10 is CIFAR-100, which instead contains 100 classes.

Evaluation Setup and Metrics

We evaluate our optimisers on the MNIST-1D and CIFAR-10 datasets. We categorise
our experiments into three different groups which are based on the model we use. We
now describe each of these groups.

• MNIST-1D MLP: We use the simple MLP we had from the XOR task. Here, we
modify the hidden dimension to be of size 256. This is consistent with the original
implementation for MNIST-1D in (Greydanus and Kobak, 2020), and offers a good
baseline for this task.

• CIFAR-10 CNN: The first model we use to evaluate on CIFAR-10 is a 3-layer
Convolutional Neural Network (CNN) with 2 fully connected layers. Here, we use
three convolutional layers with 32, 32 and 64 output channels, each using 5 × 5
kernels with padding. Each convolution is followed by batch normalisation, our
choice of activation and average pooling. We then follow with two fully connected
layers to predict out output.

• CIFAR-10 ResNet-18: We also evaluate using a stronger model, a ResNet-
18, introduced by (He et al., 2016). This deeper architecture employs residual
connections to enable training of networks with 18 layers, where each layer consists

62



5.2 Experimental Setup

of four residual blocks with skip connections. ResNet-18 is a baseline architecture
for CIFAR-10, and offers good performance in which we can evaluate our optimisers
on.

For each model, we use the Softplus activation as done previously.

For this image classification task, we employ the Categorical Cross Entropy (CCE) loss
function (Mao et al., 2023). This generalises the BCE loss to multi-class classification
problems, extending it to handle C classes (Mao et al., 2023). This is done by comparing
the predicted probability distribution over all classes with the true one-hot encoded label
distribution. The CCE loss is defined as

L(y, ŷ) = − 1

N

N∑
i=1

C∑
c=1

yi,c log ŷi,c. (5.4)

Here, N is the number of samples, C is the number of classes, and yi,c is the true label,
where it is 1 if sample i belongs to class c or 0 otherwise, and ŷi,c is the predicted
probability for sample i belonging to class c. CCE measures the difference between the
predicted probability distribution and the actual distribution. This makes it well-suited
for CIFAR-10 with given its 10 distinct object categories.

Our metrics for this task are the test accuracy and the training loss. Specifically, we
look at the peak test accuracy and final test accuracy achieved during training. We
also consider the final training. This shows how well our optimiser is able to train these
different models on different datasets.

Training Setup

Our training setup is distinct from other tasks. Here, we sample mini-batches during
training since evaluating on the whole dataset is infeasible. This is unlike our previous
tasks, which were not highly parameterised. We now detail the batch size and the
number of epochs for each task.

• MNIST-1D MLP: The batch size is 512 and we train for 100 epochs.

• CIFAR-10 CNN: The batch size is 256 and we train for 40 epochs.

• CIFAR-10 ResNet-18: The batch size is 128 and we train for 40 epochs.

5.2.5 Hyperparameter Tuning Setup

All of our experiments are tuned with Bayesian hyperparameter search combined with
the Hyperband early stopping algorithm (Li et al., 2018). Hyperband is a bandit-based
algorithm that allocates resources to promising configurations while eliminating poorly
performing ones early in training (Li et al., 2018). We choose a halving factor η =
3, which eliminates the worst-performing configurations, retaining only the top 1

3 of
candidates at each successive halving round. This significantly reduces computational
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cost by avoiding full training of suboptimal hyperparameter combinations. We set a
minimum iteration threshold of 10 epochs before any configuration can be terminated,
ensuring sufficient training time for meaningful performance evaluation.

• MSGD: Learning rate α ∈ [1× 10−4, 1] under a log uniform distribution, momen-
tum β ∈ [0.8, 0.99] under a uniform distribution.

• Adam: Learning rate α ∈ [1 × 10−4, 1] under a log uniform distribution, betas
β1 ∈ [0.9, 0.999] and β2 ∈ [0.99, 0.99999] under a uniform distribution.

• LBFGS: Learning rate α ∈ [1× 10−4, 1] under a log uniform distribution.

• KryBall: Krylov subspace size k ∈ [1, 10] under an integer uniform distribution,
krylov refresh rate rrefresh ∈ [1, 10] under an integer uniform distribution.

5.2.6 Experimental Infrastructure

We run our evaluations and experiments on a single machine that consists of an NVIDIA
RTX 3070 GPU with 8GB VRAM, and a Ryzen 5 3600 CPU with 6 cores, with a clock
speed of 3.6 GHZ. We also have 32GB DDR4 memory of available. For our software, we
use Python 3.12.4, and PyTorch 2.4.0 on a Linux Subsystem. This is complemented by
CUDA version 12.6. We use the Weights and Biases platform to track and run all of our
experiments and tune our hyperparameters. We run our experiments with maximum
GPU memory usage, and our GPU utilisation was monitored to be around 0.30 in all
runs. This is consistent with GPU utilisation rate for mainstream machine learning
workloads.

5.3 Results

In this section, we present our empirical evaluations of KryBall. We present the compar-
isons of KryBall with other optimisers for each of the tasks we have defined in Sec. 5.2.2,
Sec. 5.2.3, and Sec. 5.2.4. We then present our sensitivity analysis in Sec. 2.3.3. For
each task, we discuss the results and analyse our findings.

5.3.1 Task 1: Ill-Conditioned Function Optimisation

Table 5.1 summarises our results of optimising ill-conditioned functions. Here, we present
the epochs until convergence, where we defined our criteria earlier in Sec. 5.2.2. We see
that KryBall and LBFGS outclass MSGD and Adam when optimising the Rosenbrock
function. Specifically, LBFGS converges the fastest regardless of the Rosenbrock variant.
This is followed by KryBall, which is competitive with LBFGS. However, we note that
LBFGS represents the ideal convergence in practice, since for each iteration it evaluates
the function multiple times and backtracks. This is contrast to our method, which only
evaluates the function once. Thus, we see that our method is competitive in practice
with the ideal case.
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5.3 Results

Table 5.1: Epochs until convergence for each optimiser on the Rosenbrock and Rahimi-
Recht functions. The best values denote fastest convergence, and are bolded
and highlighted in green. Divergence is represented by N/A and highlighted
in red.

Epochs Until Convergence ↓
Rosenbrock Rahimi-Recht

U [1, 1] U [0, 1] U [0, 3] κ = 10 κ = 1× 105

MSGD 248 624 1587 94 N/A
Adam 249 981 1978 242 1720

LBFGS 5 5 5 6 N/A
KryBall 5 13 16 51 52

This is further evidenced by the optimiser trajectories for the Rosenbrock variants in
Fig. 5.1. KryBall and LBFGS are impacted little by the ill-conditioning and are able
to converge. LBFGS is able to converge very quickly as it takes very large steps in the
optimisation landscape. It also takes a near perfect straight line path and can correct
itself. We see this in Fig. 5.1(a) as it overshoots the solution, but then re-evaluates
and reaches the solution. This is a testament to LBFGS’s backtracking and ability to
evaluate the function multiple times. Our method also demonsrates this ability, and as
it gets closer to the solution takes a path similar to LBFGS.

On the other hand, we see that MSGD and Adam make little progress and can be
unstable. In Fig. 5.1(a), both MSGD and Adam become unstable when trying to take
large steps. In Fig. 5.1(b) and Fig. 5.1(c), MSGD and Adam make very little progress per
iteration. This shows that for ill-conditioned functions, MSGD and Adam are not able
to take large steps and remain stable. This supports our hypothesis that ill-conditioned
functions are a problem for first-order methods, as we discussed in Chapter 2.

For the Rahimi-Recht function, all optimisers are able to reach the minimum when the
problem is slightly ill-conditioned. Fig. 5.2(a) and Fig. 5.2(b) show the loss curves for
the two instances of the Rahimi-Recht function. Our problem of interest is Fig. 5.2(b),
where the function is severely ill-conditioned. We see in Table 5.1 that only KryBall
and Adam are able to converge, while MSGD and LBFGS diverge. Adam converges
very slowly and exhibits instability as it approaches the minimum. However, it does
not diverge like MSGD. We suspect that Adam’s adaptive learning rate is advantageous
for highly ill-conditioned functions, as it can adaptively scale each parameter. This is
beneficial since, as we approach the minimum, the eigenvalues of the Hessian become
increasingly large. MSGD’s constant momentum scaling is thus insufficient to handle
this eigenvalue spread, which explains why it diverges so rapidly.

We also suspect LBFGS diverges because its limited-memory Hessian approximation
becomes increasingly inaccurate when the function is highly ill-conditioned, leading to
poor search directions. This is unlike KryBall, which maintains reliable curvature in-
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(a) The optimiser trajectories on the deterministic
Rosenbrock function with λ1 = 2 and λ2 = 1.

(b) The optimiser trajectories on the stochastic
Rosenbrock function with λ1 = 0 and λ2 = 1.

(c) The optimiser trajectories on the stochastic
Rosenbrock function with λ1 = 0 and λ2 = 3.

Figure 5.1: The optimiser trajectories on the deterministic and stochastic Rosenbrock
functions. KryBall and LBFGS are able to find the global minimum ex-
tremely quickly, and are not impacted by the ill-conditioning of the function.
However, MSGD and Adam are impacted and converge much slower to the
optimal solution.

formation. This allows our method to adapt the approximation quality and step sizes
dynamically, enabling rapid convergence even in these highly ill-conditioned settings.

In summary, our method exhibits rapid convergence. It is competitive with the practical
best possible convergence as illustrated by LBFGS. We also exhibit good stability and
the ability to handle severe ill-conditioning, and are able to outperform state-of-the-art
first-order methods on these problems.
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(a) Loss curves for the Rahimi-Recht function with
condition number κ = 10.

(b) Loss curves for the Rahimi-Recht function with
condition number κ = 1× 105.

Figure 5.2: Loss curves for two instances of the Rahimi-Recht function. In Fig. 5.2(b),
we have slight degree of ill-conditioning with κ = 10, and in Fig. 5.2(a), we
have a very high degree of ill-conditioning with κ = 1 × 105. We note that
in Fig. 5.2(b), MSGD is not here as it diverged in every run very quickly.

Figure 5.3: The loss curves for the XOR classification task. KryBall converges in 15
epochs, MSGD converges in 63 epochs and Adam converges to 67 epochs.
LBFGS restricted to one evaluation per iteration converges in 20 epochs.

5.3.2 Task 2: XOR Classification

We now move onto our second task, XOR classification. Here, we evaluate the perfor-
mance of our optimisers based on how quickly the converge to zero loss. We note that
LBFGS is limited to one evaluation per epoch to make it fair for all optimisers. This is
because for many deep learning tasks, we no longer have a best case pratical scenario or
upper bound and need to ensure a fair comparison.

Fig. 5.3 shows the loss curves. We see that KryBall and LBFGS converge the quickest,
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Table 5.2: Classification results for MNIST1D MLP, CIFAR10 CNN, and CIFAR10
ResNet-18 given Adam, MSGD and KryBall optimisers.

Method
Final

Training
Loss ↓

Peak
Test

Accuracy ↑

Final
Test

Accuracy ↑
Adam 0.144 0.668 0.668
MSGD 0.326 0.669 0.644

MNIST1D
MLP

KryBall 0.001 0.685 0.685

Adam 0.099 0.782 0.777
MSGD 0.111 0.777 0.771

CIFAR10
CNN

KryBall 0.135 0.783 0.762

Adam 7.5e-5 0.843 0.842
MSGD 1e-4 0.832 0.829

CIFAR10
ResNet-18

KryBall 0.002 0.832 0.822

in less than 25 epochs. MSGD and Adam are also able to converge, but take longer.
This shows that KryBall is able to generalise very quickly, and that the second-order
approximation is helpful in identifying the optimal solution. As such, this shows in the
simplest setting that our approximation is useful in tasks where there are non-linearities
involved. As we transition into harder tasks, we hypothesise that our quadratic model
will be able to generalise and add more insight into the optimisation landscape.

We note that while this task is simple and may seem trivial, it is a good baseline and a
bridge to more complex tasks in the next section. We now move onto these tasks in the
next section.

5.3.3 Task 3: Image Classification

We now move into the primary focus of our results, evaluating our optimiser on standard
learning tasks that are the benchmark for optimisers. We evaluate our optimisers on
three image classification tasks: MNIST-1D, CIFAR-10 CNN, and CIFAR-10 ResNet-18,
which we described in Sec. 5.2.4. From here onwards, we do not use LBFGS since it
becomes too expensive. Thus, our optimiser suite is now Adam, MSGD and KryBall.
We present a summary of our results in Table 5.2. Our loss curves and accuracies are
provided in Fig. 5.4.

MNIST-1D MLP: KryBall demonstrates a clear advantage for the MNIST-1D MLP
task. It is able to achieve the highest peak accuracy and the lowest final training loss.
Fig. 5.4(a) and Fig. 5.4(b) show that KryBall converges quickly and makes a large
improvement over Adam and MSGD, especially in 40 to 80 epoch range. We note
that while a peak accuracy of 0.685 may not sound high, this contends with the best
result on this specific model for MNIST-1D (Greydanus and Kobak, 2020). As such, we
outperform Adam and MSGD in all metrics.
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(a) Training Loss on MNIST-1D MLP (b) Training Accuracy on MNIST-1D MLP

(c) Training Loss on CIFAR-10 CNN (d) Training Accuracy on CIFAR-10 CNN

(e) Training Loss on CIFAR-10 ResNet-18 (f) Training Accuracy on CIFAR-10 ResNet-18

Figure 5.4: Loss curves and test accuracy comparisons among our image classification
tasks consisting of MNIST-1D MLP, CIFAR-10 CNN and CIFAR-10 ResNet-
18. Each task is evaluated with KryBall, Adam and MSGD.

CIFAR-10 CNN: Here, we see a more nuanced performance. Adam achieves the lowest
final training loss, alongside the best final test accuracy. However, KryBall slightly
outperforms Adam and records a higher peak test accuracy. The training loss curves in
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Fig. 5.4(c) show Adam and MSGD reaching a slightly lower loss plateau than KryBall.
In terms of test accuracy curves in Fig. 5.4(d), all three optimisers are competitive, with
KryBall showing a strong peak but Adam and MSGD achieve slightly better peak test
accuracy. A key observation here is that in Fig. 5.4(d), KryBall originally has a lower
training loss, but then is surpassed by Adam and MSGD as training continue. During
epochs 10 to 25, KryBall is also quite variant before converging in terms of test accuracy.
This is unlike Adam and MSGD, who are consistent all the way.

CIFAR-10 ResNet-18: We see a similar comparison here. Adam has the best final
training loss, and best peak test and final test accuracy. However, KryBall is generally
competitive with Adam and MSGD. It achieves the same best test accuracy as MSGD,
and only a slightly lower final test accuracy. Furthermore, Fig. 5.4(e) shows the same
trend as in Fig. 5.4(c), where KryBall is initially competitive and achieves a lower training
loss, but then is surpassed by Adam and MSGD as training continues. In Fig. 5.4(f), we
see that KryBall is more stable than Adam and MSGD in the earlier epochs, but less
stable in the later epochs and thus its performance suffers.

To recap, KryBall outperforms the state-of-the art Adam and MSGD on the MNIST-1D
MLP task, but does not outperform them on the CIFAR-10 tasks. More interestingly,
we see that KryBall achieves lower training loss initially in all tasks early on, but then
is surpassed by Adam and MSGD as training continues for the CIFAR-10 tasks. Near
the end of training, KryBall is less stable than Adam and MSGD and is more variant.
We discuss this further inSec. 5.4.

5.3.4 Sensitivity Analysis

We now perform a sensitivity analysis of our method on the MNIST-1D MLP task. We
choose this since it is our best performing task. Our sensitive analysis is on the Krylov
subspace dimension M and the krylov refresh rate rrefresh . This is done by varying M
and rrefresh from their hyperparameter ranges and keeping all other hyperparameters
constant. We present the results in Fig. 5.5.

Krylov Subspace Size (M): We see that the Krylov subspace size M is sensitive to
the performance of KryBall. For low M , performance suffers since we are not able to
approximate the Hessian well. As M increases, we obtain good performance. However,
as we continue to increase M past a certain point (5), our performance plateaus. This is
interesting, as usually a higher M results in a better approximation. We suspect that for
M = 5 onwards, the dominant curvature information has already been captured. The
new basis vectors that are generated are less relevant and do not add useful information,
since we have already captured most of the curvature information previously. We present
some further analysis about our approximation in Sec. 5.4.

Krylov Refresh Rate (rrefresh): The Krylov refresh rate is best when rrefresh = 1.
This is because when rrefresh = 1, we compute the Krylov subspace at every iteration
and are always using up to date information. As rrefresh increases, we instead fall back
to our approximation not at the current point in the optimisation landscape. This
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(a) The sensitivity analysis of the Krylov subspace
dimension M on MNIST-1D MLP.

(b) The sensitivity analysis of the krylov refresh
rate rrefresh . on MNIST-1D MLP.

Figure 5.5: Sensitivity analysis of KryBall on the MNIST-1D MLP task. We vary the
Krylov dimensionM , the maximum trust region radius ∆max , and the Krylov
refresh rate rrefresh . The parameters are varied according to their hyperpa-
rameter ranges we defined in Sec. 5.3.4. The best performing point is marked
in red.

is fine if we our information is not too outdated, as is the case for rrefresh = 2 and
rrefresh = 3. However, as rrefresh ≥ 4 our information is outdated and thus our quadratic
model approximation is no longer accurate. This results in KryBall performing worse.
In practice, we choose rrefresh = 3 as our default value.

5.4 Discussion and Further Analysis

In this section, we present critical questions about the results we have observed and the
choices we have made in evaluating our algorithm. We then answer these questions with
hypotheses, experiments and further analysis.

Why do we see late epoch instability but good early epoch performance?

We saw in Sec. 5.3.3 that KryBall achieves good early epoch performance, but late epoch
instability. We suspect this has to do with our quadratic approximation. In the early
epochs, our quadratic model is accurate and a good approximation of the landscape.
However, as training progresses, the landscape changes and we suspect that a quadratic
model is less accurate.

Ma et al. (2022) state that the loss landscape of neural networks is multiscale, and that
the quadratic model is only a local approximation of the landscape. Specifically, they
find that in a neighbourhood of the local minima, the loss mixes a continuum of scales
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(a) The loss landscape at the start of training (first
epoch).

(b) The loss landscape near the end of training (last
epoch).

Figure 5.6: The loss landscape of the MNIST-1D MLP model from the view of SGD.

and instead grows subquadratically. As dimensionality increases, they state that the
loss landscape instead shows several separate scales. This means that our quadratic
model is not accurate in the presence of local minima. Given that the loss landscape is
multiscale, and more importantly subquadratic near the local minima, this means that
a first-order approximation may be better. In Fig. 5.4(d) and Fig. 5.4(f), it is plausible
that the variance we see near the end of training is due to this.

To illustrate this, we perform a small experiment. We take the MNIST-1D MLP model
with SGD and at distinct points in the training process, we sample the loss landscape.
This is done through an exhaustive line search over λ ∈ [−2, 2]. We then plot what the
loss landscape is at the start and end of training. This empirically shows a slice of the
loss landscape from the perspective of SGD.

At the start of training, we see that the landscape is shaped exactly like a quadratic bowl
in Fig. 5.6(a). However, near the end of training, that the landscape is approximately
quadratic instead as seen in Fig. 5.6(b). It no longer is shaped exactly like a quadratic,
but instead is stretched inwards. This agrees with Ma et al. (2022), and it is plausible
that this illustrates the change in the loss landscape as training progresses.

What is the effect of the activation function on our optimiser?

All classification tasks in Sec. 5.3.2 and Sec. 5.3.3 are evaluated with the Softplus acti-
vation function. Now, we examine the effect of the activation function on our optimiser.
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(a) Loss curves of the MNIST-1D MLP task with
different activation functions using KryBall.

(b) Test accuracy of the MNIST-1D MLP task with
different activation functions using KryBall.

Figure 5.7: The loss curves and test accuracy of the MNIST-1D MLP task evaluated
with KryBall and ReLU, Softplus, Tanh and GeLU activation functions.

We evaluate the MNIST-1D MLP task with the following different activation functions
using KryBall: ReLU, Softplus, Tanh and GeLU.

In Fig. 5.7, there is a stark distinction between the smooth activations and the non-
smooth activation function ReLU. When using smooth activation functions, we reach
close to zero training loss and our test accuracy is much better. However, the loss is
much higher and our accuracy is lower when using ReLU. We have a good reason for
this, which is that the quadratic approximation suffers in the presence of non-smooth
activation functions. ReLU introduces non-differentiability at zero. This means that our
quadratic model and trust-region framework, whose underlying assumptions are that we
operate in smooth regions, is violated. Our method relise on meaningful HVPs for the
approximation, but these are not well-defined at the transition points of ReLU units.
This leads to poor curvature approximations. At this point, if we try to approximate
the Hessian and the surrounding region using a quadratic model, we ultimately will
not be able to. As such, it is better to use first-order methods that do not have these
assumptions when using non-smooth activation functions.

Are our directions meaningful and distinct?

Song et al. (2025) show that gradients exhibit spurious alignment with the dominant
eigenspace of the Hessian during training. Specifically, when the gradient appears to
align with the top eigenspace, projecting it onto this subspace actually yields poor
training progress Song et al. (2025). This finding suggests that our construction of
distinct search directions is likely meaningful. Our method explicitly constructs direc-
tions from different sources. The SFN step, where we apply the abs function to the
eigenvalues, alters the dominant subspace by ensuring positive definiteness. We hy-
pothesis that this breaks the spurious alignment observed in standard training, making
our dominant eigenspace directions genuinely useful rather than being correlated with
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the gradient. The strong empirical performance of KryBall on ill-conditioned problems,
where eigenspace structure is critical. This supports the hypothesis that our multi-
directional search strategy captures meaningful aspects of the optimisation landscape
that individual directions cannot provide alone.

How can we tell if our computed SFN step approximates the true SFN step?

The crux of the Krylov subspace approach is to approximate the Hessian with a low-
dimensional projected Hessian that lets us compute the SFN step. We now quantify how
to analytically measure this approximation quality through the reconstruction error

||r|| = ||z∗ − ẑ||, (5.5)

where z∗ is the true SFN direction and ẑ is our Krylov approximation:

ẑ =
m−1∑
k=0

αkH
kĝ. (5.6)

Using the eigendecomposition H = V ΛV T and letting c = V T ĝ, we can express both
directions in terms of the eigenvalues. The true SFN direction becomes

z∗ = −V |Λ|−1c, (5.7)

while our Krylov approximation can be written as

ẑ = V

(
m−1∑
k=0

αkΛ
k

)
c. (5.8)

We can then minimise the reconstruction error by formulating it as a linear system.

r = z∗ − ẑ = V (−|Λ|−1 −
m−1∑
k=0

αkΛ
k)c (5.9)

By setting the middle term to zero, we get,

⇒ −|Λ|−1 =

m−1∑
k=0

αkΛ
k (5.10)

⇒ −|λi|−1 =
m−1∑
k=0

αkλ
k
i for each eigenvalue λi (5.11)

⇒Mα = −1r where Mi,k = |λi|λk
i . (5.12)

Solving this linear system for α and computing ||r|| tells us how well our basis represents
the ideal |Λ|−1 operator. A small reconstruction error indicates that our limited Krylov
subspace adequately spans the directions needed for an accurate SFN step. A large
reconstruction error indicates that at the current point, our computed SFN step is not a
good approximation of the true SFN step. Thus, we can use this to monitor the quality
of our SFN step.
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5.5 Limitations and Improvements

While KryBall demonstrates promising performance across several tasks, our evaluation
reveals important limitations. We now discuss these limitations and how to address
them.

5.5.1 Late-Epoch Instability

As demonstrated in our CIFAR-10 experiments, KryBall exhibits increased variance
and instability in later training epochs. This occurs when the quadratic approximation
becomes less accurate near local minima, where the loss landscape exhibits multiscale,
subquadratic behaviour (Ma et al., 2022). We also saw empirical evidence of this when
we sampled the optimiser trajectory in Fig. 5.6. One way to address this is to switch
off the quadratic model and only use first-order information as we approach the local
minima. This would likely require a heuristic where after a certain point in training, we
switch off the quadratic model and only use either SGD or Adam. One such heuristic
could be to use the gradient norm to determine when we’ve entered a region where the
quadratic approximation breaks down. We can then switch to first-order methods when
g falls below a threshold τ . We can also consider the decay rate of the gradient norm to
determine when we should switch. We discuss these further in Sec. 6.2.1.

5.5.2 Dependence on Smooth Activation Functions

A fundamental limitation of KryBall is that it requires smooth activation functions to
operate effectively. Our analysis in Fig. 5.7 shows that non-smooth activation functions
such as ReLU significantly degrade performance, as points of non-differentiability violate
the underlying assumptions of the quadratic model. To address this, we require a way
to approximate these points without using the quadratic model. Approximation by
finite differences is one such method. This has been done by Moosavi-Dezfooli et al.
(2019) to approximate the Hessian cheaply, and has shown to be effective in CIFAR-10
classification tasks.

5.5.3 Hyperparameter Sensitivity

Our sensitivity analysis reveals that KryBall is reasonably dependent on the Krylov
dimension M and refresh rate rrefresh. We note that while our hyperparameters are not
as sensitive as Adam and MSGD, they still require careful tuning, where suboptimal
values can lead to poor performance as we saw in Fig. 5.5. One way to address this
could be to use adaptive schemes that automatically adjust M and rrefresh. This has
been done by Henriques et al. (2019), who automatically rescale hyperparameters by
using an objective change heuristic.
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5.5.4 Trust-Region Step Rejection

Our trust-region framework can reject optimisation steps when the quadratic model
poorly predicts actual function behavior. While this provides stability, frequent step
rejections can slow convergence compared to first-order methods that always accept
their steps. This is particularly the case when the Hessian approximation degrades or
is in highly non-quadratic regions. A good way to address this is to simply use the
gradient or momentum as a fallback. Moreover, we can instead consider the hybrid
approach where if our step is rejected, we proceed with a first-order optimiser such as
Adam or MSGD.

5.5.5 Computational Overhead

KryBall requires computing HVPs and constructing Krylov subspaces, introducing ad-
ditional computational cost compared to first-order methods. While HVPs can be com-
puted efficiently, the overall cost per iteration remains higher than first-order methods.
The key limitation here is that the main computational cost comes from the construction
of the Krylov subspace. As our Krylov dimension M is fixed throughout training, this
means we concur a cost of O(M ×N) per every rrefresh iterations. This overhead could
be mitigated by adaptively reducing the Krylov dimension M in regions where high-
quality approximations are not critical, or by increasing the refresh rate rrefresh when
the landscape is relatively stable.

In this section, we presented the evaluations of our optimiser, KryBall, on a range of
tasks. We evaluated KryBall’s performance on ill-conditioned problems, simple binary
classification, and more complex image classification tasks. We discussed KryBall’s
performance in comparison to the state-of-the-art optimisers Adam and MSGD. We then
followed with a sensitivity analysis, a discussion about key questions and our hypotheses,
and finally the limitations of our method. We now move on to conclude this thesis.

76



Chapter 6

Conclusion

In this chapter, we summarise the main contributions of this thesis, discuss its implica-
tions and suggest future work directions.

6.1 Summary

In this thesis, we introduced KryBall, a novel second-order optimisation algorithm de-
signed to address fundamental limitations in current optimisation methods for deep
learning. We make a number of contributions that span both the practical and theoret-
ical aspects of optimisation.

For our theoretical contributions, we present the KryBall algorithm that combines the
Saddle-Free-Newton method with a Krylov-subspace approach and integrates this within
a trust-region framework. We connect the mathematical foundations of Krylov methods
to practical optimisation performance, and address the issue of saddle point proliferation
in high-dimensional spaces. We provide systematic analysis of loss landscape behaviour,
problem conditioning, the effect of activation functions, and identify cases where our
method excels and fails (such as when non-smooth activations are used). We also provide
analytical tools for assessing the effectiveness of Krylov subspace approximations and
demonstrate how to quantify the approximation error in our approach.

For the practical contributions, we present an implementation of Krylov subspace based
Saddle-Free Newton methods integrated with a trust-region approach. We present the
first N -dimensional subspace optimiser fully integrated with PyTorch, alongside an ex-
tensible testing suite. We also present our evaluations on ill-conditioned functions and
classification tasks, where we demonstrate that KryBall is competitive with state-of-the-
art methods, achieves rapid convergence on specific tasks, and is particularly well-suited
to ill-conditioned problems.
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6.2 Future Work

While KryBall demonstrates promising performance across several optimisation tasks,
our evaluation reveals several avenues for improvement and extension. The limitations
identified in Sec. 5.5, particularly around late-epoch instability, scalability, and depen-
dence on smooth activation functions, point to promising research directions that can
enhance our method. In this section, we outline key areas where future research could
build upon our work. We discuss hybrid approaches, the need for theoretical rigour,
improved model evaluations, support for non-smooth optimisation and computational
efficiency.

6.2.1 Hybrid Approaches

Our analysis in Sec. 5.5.1 revealed that KryBall exhibits late-epoch instability when the
loss landscape transitions from quadratic to subquadratic behavior near convergence. A
promising direction is developing hybrid optimisation schemes that dynamically switch
between second-order and first-order methods based on local landscape. There are many
approaches to do this. For example, we could run KryBall for the first k iterations
until we are no longer confident that our quadratic approximation is accurate, and then
switch to MSGD or Adam. We could also run KryBall every k iterations, interweaving
the updates with MSGD or Adam through training. The second approach has already
seen wide use. The Sophia optimiser, which we covered in Chapter 3, is an example of
this approach, as it weaves its second order update with signSGD (Liu et al., 2023).

6.2.2 Theoretical Rigour

While we empirically evaluate KryBall and can adhere to the rapid convergence it ex-
hibits in tasks such as ill-conditioned function optimisation and XOR classification, we
currently lack strong theoretical guarantees. Future research should focus on establish-
ing formal convergence rates and characterising the conditions in which approximation
methods hold. For example, this involves developing theoretical frameworks that connect
the reconstruction error analysis to actual convergence properties. We can further extend
this by establishing error bounds on the approximation methods we use. This includes
formalising theoretical upper and lower bounds, as well as introducing an expectation
on the error introduced by the approximation methods.

6.2.3 Improved Model Evaluations

Our evaluation focused primarily on small-scale problems, with ResNet-18 on CIFAR-10
representing the largest model tested. Future work should evaluate KryBall’s scalability
to contemporary large-scale applications such as transformer models, large convolutional
networks, and other modern architectures. We also recommend expanding our evaluation
suite to include more diverse tasks rather than just image classification. Examples of
such tasks include natural language processing, such as language modelling on the Penn
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6.3 Concluding Thoughts

Treebank dataset (Marcus et al., 1993), which involves predicting the next word in a
sentence. Other tasks include 2D Neural Radiance Fields (Mildenhall et al., 2021).
This involves predicting the radiance of a scene from a single image, and activation
maximisation, which involves optimising an input image to maximise the activation of
a specific neuron in a neural network (Olah et al., 2017).

6.2.4 Non-Smooth Optimisation

Our analysis demonstrated that KryBall’s performance degrades significantly with non-
smooth activation functions like ReLU due to violations of the quadratic model’s smooth-
ness assumptions. Future research should explore specialised variants that handle non-
differentiable points more effectively. This could be done by using finite difference ap-
proximations, as was discussed in Sec. 3.3 or developing smoothed approximations of
non-smooth activations, Another direction involves investigating how recent advances
in non-smooth optimiation theory could be incorporated into Krylov-based methods to
maintain second-order benefits while handling piecewise linear functions.

6.2.5 Computational Efficiency

We discussed the limitation of having computational overhead in Sec. 5.5.5. As such, fu-
ture work could focus on exploring ways to reduce the computation overhead associated
with second-order methods. First, developing more efficient Arnoldi iteration imple-
mentations that exploit sparsity patterns or low-rank structure could reduce the cost of
subspace construction. Secondly, we can investigate adaptive schemes that dynamically
adjust hyperparameters depending on the current point in the optimisation landscape.
This ensures that parameters like the Krylov dimension M and the Krylov refresh rate
rrefresh are only updated when necessary. Thirdly, we explore research into creating par-
allelisable and distributed computing algorithms for common matrix operations, such as
matrix inversion and eigendecomposition. These directions could significantly improve
practical performance, and in combination with researching theoretical guarantees as
stated in Sec. 6.2.2, we could ensure that second-order methods are more widely adapt-
able.

6.3 Concluding Thoughts

Optimisation in deep learning is a challenging problem, but it is fundamental for advanc-
ing the state-of-the-art. Optimisation has led to the development of powerful models,
techniques and novel innovations. The work presented in this thesis is a step towards
more efficient optimisation. We present KryBall, our second-order optimisation algo-
rithm that combines the advantages of first and second-order methods by using Krylov
subspaces, the Saddle-Free-Newton, and a trust-region framework. We thus take a step
towards the goal of efficiently navigating the optimisation landscape, and improving the
performance of integral machine learning models and tasks in today’s world.
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Dagréou, M.; Ablin, P.; Vaiter, S.; and Moreau, T., 2024. How to compute
hessian-vector products? In ICLR Blogposts 2024. https://iclr-blogposts.git

hub.io/2024/blog/bench-hvp/. Https://iclr-blogposts.github.io/2024/blog/bench-
hvp/. [Cited on pages 26, 27, and 28.]

Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; and Ben-
gio, Y., 2014. Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. NIPS, 27 (2014). [Cited on pages 2, 3, 18, 19, 24, 25, and 49.]

81

https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/


Bibliography

Deisenroth, M. P.; Faisal, A. A.; and Ong, C. S., 2020. Mathematics for machine
learning. Cambridge University Press. [Cited on pages 8, 9, 10, 12, 16, 20, 23, and 24.]

Dozat, T., 2016. Incorporating nesterov momentum into adam. (2016). [Cited on
pages 37 and 40.]

Duchi, J.; Hazan, E.; and Singer, Y., 2011. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research, 12,
7 (2011). [Cited on pages 37 and 38.]

Geoff, H., 2012. Rmsprop, coursera: Neural networks for machine learning. [Cited on
page 38.]

Goodfellow, I.; Bengio, Y.; and Courville, A., 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org. [Cited on pages 8, 9, 10, 16, 17, 19, 20, 21,
and 24.]

Greydanus, S. and Kobak, D., 2020. Scaling down deep learning with mnist-1d.
arXiv preprint arXiv:2011.14439, (2020). [Cited on pages 62 and 68.]

Gutknecht, M. H., 2007. A brief introduction to krylov space methods for solving
linear systems. In Frontiers of Computational Science: Proceedings of the International
Symposium on Frontiers of Computational Science 2005, 53–62. Springer. [Cited on
pages 27, 28, 29, and 30.]

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 770–778. [Cited on page 62.]

Henriques, J. F.; Ehrhardt, S.; Albanie, S.; and Vedaldi, A., 2019. Small
steps and giant leaps: Minimal newton solvers for deep learning. In ICCV, 4763–4772.
[Cited on pages 27, 37, 45, 46, 60, and 75.]

Hornik, K.; Stinchcombe, M.; and White, H., 1989. Multilayer feedforward net-
works are universal approximators. Neural networks, 2, 5 (1989), 359–366. [Cited on
page 17.]

Johnson, R. and Zhang, T., 2013. Accelerating stochastic gradient descent using
predictive variance reduction. NIPS, 26 (2013). [Cited on page 36.]

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger,
O.; Tunyasuvunakool, K.; Bates, R.; Ž́ıdek, A.; Potapenko, A.; et al.,
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