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Rabin’s fingerprint scheme is an algorithm that is used to generate unique identifiers,
otherwise known as fingerprints, for a variety of structures such as graphs, strings and trees.
It does so by leveraging polynomials in GF'(2) and a series of functions to emit a
close-to-unique byte stream. We implement this algorithm for the Mojo programming
language, extending the semantic analysis stage to provide fingerprints for types in a given
Mojo program. We follow closely a Modula-3 reference for our implementation.

1. INTRODUCTION

Fingerprinting is a cryptographic algorithm used to create unique identifiers, or fingerprints,
for various data structures such as graphs, strings, and trees. Rabin’s fingerprinting scheme is
one such technique amongst the various fingerprinting algorithms that is used to do this. We
use Rabin’s fingerprint scheme due to its mathematical robustness and probabilistic guarantees
against collisions - where a collision is when two fingerprints are equal when their underlying
structures are different [1, 3]. We first go through some relevant definitions for understanding
the algorithm.

1.1 Definitions and Properties

The core of the fingerprinting scheme resides in using polynomial arithmetic defined over the
finite field GF'(2) [1, 3]. The goal of this algorithm is to essentially utilize a series of functions
to produce nearly unique byte streams for inputs [1]. Given a bit string A = (a1, ..., a,) with
each a; € Zs Vi € [1,n], we define a polynomial A(z) as
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A polynomial P(z) is irreducible if it cannot be factored into two polynomials. This is similar
to the notion of a prime number - where the factors of the polynomial is simply itself and
the multiplicative identity (usually 1). With this notion of irreducibility, a fingerprint f(A) is
defined as follows:

f(A) = A(x) mod P(x)

where P(x) is some irreducible polynomial and A(z) is defined by the bitstring of A.
Given this, we can programmatically define fingerprinting. We define a nest as either a text

string or an ordered pair of two nests [2]. The fingerprint of a nest ¢, denoted as FP(z), is
computed using the following rules:

FP(t) = FromText(t) if t is a text
| Combine(FP(y), FP(z)) if ¢ is a pair (y, z).



This is analogous to creating a fingerprint based on the bitstring representation of a text ¢ if ¢
is a text, or combining two fingerprints f(A) and f(B) if t is a pair of nests. We reconcile these
two definitions by seeing that in the implementation of FromText and Combine, we implicitly
will use the fact that f(A) = A(x) mod P(x) to do the fingerprint computation.

A nest t is a subnest of another nest r if it is equivalent to r or is one of the components of r
if r is in the form of an ordered pair. This allows us to define two key functions - length and
size. The length of a nest is the sum of distinct texts, whereas the size is the number of distinct
subnests. See that for a nest IV defined as:

((7?n177 , ” n277 )’ 77n177)

the length is 2 as we have [{"n1”,”n2” }|. However, the size is 4 as we have the following distinct
Subnests: {77n177 , ” n2’7 , (77n177 , ” n2’7 )7 ((’7n177 , 2 77,2”)’ ’7n177 )}‘

We note that there is a strong probabilistic guarantee for this fingerprinting algorithm. Here,
two nests ¢ and r collide if ¢t # r but FP(¢) = FP(r) [2]. This is done by using a 128-bit magic
number, which guards against collisions even if there exists an adversary that knows how the
algorithm works [1, 2]. This probabilistic guarantee ensures that for any nest S, the probability

of collision is at most
length(S) x size(S)
262

See that for large lengths and sizes, we still find that the chance of collision is very small.
This guarantee allows for the computation of an upper bound on the probability of collisions in
various applications. Though, note that this guarantee only holds if the underlying nest is truly
independent of the 128-bit number, as we can construct subnests that violate this principle if
we knew what the number was [2]. Given the chance of guessing a 128-bit number is 21%, we
can assume that the probabilistic guarantee holds given no information or dependence on the
number. As such, this allows us to use this scheme for many applications and create fingerprints
for many structures.

1.2 Applications of Fingerprinting

Fingerprinting applications include reducing data transfer in distributed systems by comparing
fingerprints instead of entire files. This ensures type safety in distributed programming, where
values are transmitted as bit sequences over a network, and so fingerprints can verify type
consistency efficiently. We can also use it to detect common sub-expressions in computational
graphs.

Furthermore, we can fingerprint data structures like directed acyclic graphs (DAG’s), binary
trees, or subsets by using defining rules for a textual representation that captures the underlying
structure. For example, we can fingerprint a node of a DAG by associating each of it’s children
with a unique label and building up a textual representation recursively.
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Here, [; is a unique label associated with the ith child of a node n. We use || as the delimiter to
build the textual representation. While this is a simple example, more complex representations
can be used that can better convey the underlying structure. We now proceed to detail our
implementation of Rabin’s fingerprint scheme for the Mojo language.

2. IMPLEMENTATION



We split our implementation in the following three parts.

e GF(2) Polynomial Arithmetic
e Generic Fingerprinting

e Implementation of Fingerprinting Module

We detail our implementation throughout the above stages.

2.1 GF(2) Polynomial Arithmetic

The Polynomial class contains the implementation of GF'(2) polynomials. Each polynomial in
GF(2) is represented by its coefficients. We use a TreeSet of BigInteger to represent this. The
TreeSet is populated with the coefficients of the polynomial, and is ordered such that the highest
degree is the first entry (using a reverse comparator). We use the BigInteger class as it allows
us to to take advantage of the BigInteger utility methods such as shiftLeft, shiftRight,
pow and more - which streamline the process of implementing polynomial arithmetic. The
Polynomial class extends an Arithmetic interface which consists of bitwise and arithmetic
operations on GF'(2). We implement these by utilising the aforementioned utility methods. We
also choose this representation as we can forgo overflow errors as BigIntegers are unbounded.

Polynomials can also be created using methods from the Utils static utility class. This allows
for translation from the Modula-3 reference, which represents its polynomials as two 32-bit
integers. The fromInts method encapsulates this and allows us to create polynomials via the
same representation. This eases the process of translating the Modula-3 code. In addition to
this, we provide fromLong and fromBytes - where we can create a polynomial from a long
and a ByteBuffer of size 8. Utility methods toInts, toLong, and toBytes are also provided
to translate the polynomial into the relevant datatypes/structures. With this, we provide the
following polynomial constants that are matched with the Modula-3 reference.

ZERQO: The zero polynomial

ONE: A polynomial of highest degree 63

X: The X polynomial from Poly.i3

e P: The irreducible polynomial P used for polynomial modulo from PolyBasis.i3

2.2 Generic Fingerprinting

We implement a generic fingerprinting algorithm in the Fingerprint class. A fingerprint con-
sists of a ByteBuffer that is allocated with size 8 and cleared upon use. We provide the
following methods for fingerprinting taken faithfully from the Modula-3 reference.

e fromText: Creates a fingerprint from a textual representation.

e fromChars: Creates a fingerprint from a character buffer. We note that this can be used
with a ByteBuffer too, since it can be converted to a character buffer.

e combine: Combines a series of fingerprints by calling computeMod on a ByteBuffer with
initial polynomial ONE. We permute the resulting polynomial with the magic number and
the permutation array defined in the Constants class.



We utilise the computeMod method from the Polynomial class, which given an initial polynomial
p and a series of bytes b, outputs a polynomial k£ as the combined result of p and b. This is used
in all of the fingerprinting methods mentioned above. We note that the inclusion of the magic
number and permuting the bytes of the polynomial help keep the probabilistic guarantee of the
fingerprint scheme. As such, this can be used as a generic fingerprinting algorithm for any text
or sequence of characters. We provide an example usage where we fingerprint the Queens.mj
and QueensStatic.mj programs as texts as follows.

Fingerprinting Mojo programs as texts.

// Instantiate mojo programs
File t1 = new File(T1);
File t2 = new File(T2);

// Get fingerprints

Fingerprint fpl = Fingerprint.fromText (readText(t1));
Fingerprint fp2 = Fingerprint.fromText(readText(t2));
Fingerprint combined = Fingerprint.combine(fpl, fp2);

print (fpl, fp2, combined);

2.3 Implementation of Fingerprinting Module

The FPModule class implements the majority of the Mojo fingerprinting. It extends Semant to
provide fingerprinting of a mojo program after semantic analysis. We first make changes to
Absyn. java, where we augment each Type with the following fields:

e fpId: A unique fingerprinting id for a particular type. This is equivalent to converting a
Fingerprint to a sign extended 32-bit integer via the toInt function in MojoFP.

e fp: The Fingerprint for a particular type.
e sccld: Used to track the strongly connected components for a particular type.

e repId: Used to track a unique representation of a particular type.

This allows us to traverse the type graph and mutate these fields with the right values to ensure
consistent fingerprinting. Alongside this, we also create the MojoFP static utility class which
wraps the methods in Section 2.2 as per M3FP.m3.

The FPModule class provides functionality for traversing the type graph and building up a
textual representation for a particular type. We closely follow TypeFP.m3 from the Modula-3
reference. Given a particular type, we can construct the textual representation by finding the
strongly connected component of that type in the type graph. We outline the following methods
which do this.

e fromType: Computes the fingerprint by finding the SCC for a given type.

e visitSCC: Finds the SCC for a given type and builds the textual representation. It does
so by performing DFS and keeping track of the nodes and the textual representations for
each component.



e finishSCC: Finalizes the fingerprint computation for a given SCC and resets the SCC. It
combines the fingerprints of all nodes in the SCC and updates their unique identifiers.

e getRep: Retrieves the representative node for a given type, ensuring that each unique
type has a single, consistent representation.

Note that utility methods compareNode and compareInfo are also used to recursively update
and compare nodes and their information. The actual specifics of textual representation are
implemented in the FPrinter for the Type’s. For Value’s, the textual representation is via the
addFPTag method. We detail the textual representations as follows, starting with the different
Type’s. In places where Value’s are added (such as Proc, Object and Record), we refer to the
Value textual representation in Table 1.

e Int: $int.

e Proc: Starting with PROC, add the Formal values. Add => 7 if the result exists. Then
if there exists children add them as well.

e Enum: Case bash to $boolean or $char if equal to Bool or Char. Otherwise, add all the
names in the current scope to ENUM separated by a space.

e Object: Starting with OBJECT, add all the fields first. Do the same with methods
prepended by a METHOD tag. Then traverse the parent recursively.

e Ref: Case bash to $refany, $address or $null if Refany, Addr or Null. Otherwise
append REF and traverse the target of the ref type.

e Record: Starting with RECORD, add all the fields.

e Array: Prepend OPENARRAY if open or ARRAY if fixed size. Then traverse through the
array.

e Err: $ErrType.
e Named: Unsupported as named types should be stripped after semantic analysis.

e Subrange: Prepend with SUBRANGE min max where min is the min subrange value and
mazx is the max subrange value. Then traverse the base type of the subrange.

A Value’s textual representation is similar, with the addFPTag and FPStart methods, in which
a Value is encoded as follows. Note that name refers to the name of the value. Additionally, if
the value has a certain offset o, we add @o. If the value is external, a $ followed by the external
name. These are appended before the final closing < tag for all of the below. We write this as
[@o][$extName] where the brackets denote an existence condition (offset is not 0, and the value
is external). Thus, each Value can take on the following core textual representation t.

t = name[Qo|[$extName]

As such, we use this for each of the different Value’s in our language to yield the following
textual representation.



Value Textual Representation

EnumElt <ENUM-ELT:t>
Tipe <TYPE:¢>
Variable <VAR:t>

Formal <mode:t> where mode is either VALUE, VAR, READONLY
Method <OVERRIDE:¢> if the method is an override or <METHOD:¢>

Const <CONST:t = e> where e is the constant value of the Expr
Field <FIELD:¢>

Procedure <PROCEDURE: ¢>
Unit <UNIT:t>

Table 1: Textual representation of Value in the Mojo language.

Note that for the above, the offsets are all 0. Also note that many Type’s have Value’s within
them, such as Proc and Record and so these also appear in the textual representation of a
particular Type. The combination of these three stages allows us to instantiate the FPModule
for fingerprinting. An example usage of the program is as follows, where we perform semantic
analysis first followed by fingerprinting.

Usage of fingerprinting module

FPModule module = new FPModule(wordSize);

// Semantic Analysis
module.Check (unit) ;

module.print (Scope.Top());

if (Error.nErrors() > 0) return;

// Fingerprinting
module.fingerprint (unit);
module.print();

3. DISCUSSION

3.1 Example Fingerprints

We showcase example fingerprints from our implementation. For the generic case as mentioned
in Section 2.2, fingerprinting Queens.mj and QueensStatic.mj as texts and combining their
fingerprints yields the following. This is provided in the Main class of the Fingerprint package.

Result of fingerprinting Queens programs

// Queens Fingerprint
0000001110001001011100111000111010100001111101000111100110100000
// QueensStatic Fingerprint
0000101100011111011111000111011101010111010110000110011101100011
// Combining Both Fingerprints
0111011101110000111000111110100001010010100010101101110000011100




To see that our implementation is concrete, we reconcile with both fromText and fromChar
methods and confirm that the fingerprints are equivalent for both (and that the combination of
both is also the same). We also fingerprint according to the actual textual representation as seen
in Section 2.3. We do this for RecordRecord.mj, Enum.mj and Override3-ok.mj and find that
we get the following fingerprints for the Value’s as according to the full textual representation.

Value Fingerprints as per actual textual representation

// RecordRecord Fingerprint (Record Type)
0000001111111011001010000010010100010010110111101110101010011110
// Enum Fingerprint (Enum Type)
0000100001011110010011001010101011100110100101101101011111001001
// Override Fingerprint (Object Type)
0000111111111010011010101000010100010110100010010100111110110111

The full textual representations of each of the values and the sub-components can be found by
running mojo.Main.

3.2 Key Differences with Modula-3 Reference

We note key differences between the reference implementation for future work. Primarily, there
are two parts where there are differences - polynomial arithmetic and the textual representa-
tion. For starters, we forgo the use of generating polynomial and power tables as defined in
PolyBasis.m3. This is because these tables are only used in the Power and bit extension func-
tions in Poly.m3. Given that the Power function effectively computes 2% MOD P - we can use
our TreeSet representation to do this reasonably efficiently.

The other key difference is in the textual representation of the types. Though inspired by the
Modula-3 reference, the Mojo language doesn’t have a brand or a notion of tracing - and so we
forgo using these in the textual representation. Examples of these in the Modula-3 reference
are as follows:

Brand and Tracing in Modula-3 reference

IF (NOT p.isTraced) THEN M3Buf.PutText (x.buf, "-UNTRACED") END;
Brand.GenFPrint (p.brand, x);

Additionally, global values aren’t dealt with in our implementation as this requires checking if
import and export flags and also requires messing with the scope. Specifically, we note that the
implementation adds the following to the textual representation given a global Value

Global value implementation in Modula-3 reference

IF (global) THEN
s.top := O;
Scope.NameToPrefix (t, s, dots := TRUE);
Scope.PutStack (x.buf, s);

where we find NameToPrefix and PutStack in Scope.m3.

The reference implementation also has default expressions (Expr) for Formals and Methods. It



encodes these default expressions as well. We note that our implementation does not encode
expressions, though this would be a future work. However, when we encounter a Value.Const,
we add to the textual representation when the Expr is either an Int, Bool.True or Bool.False.
This is because we know it’s a constant value. Furthermore, in addFPTag and addFPEdges, we
note that there is a base method that should be invoked which gets the base type of a given
Value. This is so the the type can be added to the Info struct to traverse the children later.

Another difference is that we use modern data structures such as HashMap and an ArrayList,
and so we don’t need to maintain our own hash table or dynamic array. This makes the code
more streamlined and as a result methods such as ExpandHash and ExpandReps in the Modula-3
reference are not implemented.

4. CONCLUSION

We implement a close version of Rabin’s fingerprint scheme with inspiration taken from the
Modula-3 reference. This was done by first implementing polynomials in GF(2), a generic
fingerprinting class, and integrating into the primary Mojo codebase by extending Semant to
include fingerprinting by traversing the SCC’s and building a textual representation. We provide
a unique textual representation for the different Type’s and Value’s. Key changes in comparison
to the reference implementation include polynomial arithmetic and the textual representation,
which stem from design choices and language differences. Future work would involve also
fingerprinting Expr, writing concrete tests, and reconciling with the Modula-3 reference.
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