Solving Optimal Control Problems with Interior Point

Differential Dynamic Programming

Pranav Pativada
Supervised by Mingda Xu

October 2023

1 INTRODUCTION

Optimal control theory, commonly referred to as tra-
jectory optimization in robotics, presents a framework for
motion planning and synthesising complex behaviors in
nonlinear dynamic systems [1]. The objective in optimal
control is given a problem, to find an optimal or desirable
set of states and controls that comply with the system’s
dynamics and any additional constraints. These trajec-
tories are evaluated for optimality through a designated
objective function. As such, optimal control problems
can be formulated as optimisation problems in which a
subset of constraints are governed by the system’s dy-
namics [1,2].

Optimal control finds practical application across di-
verse areas such as autonomous systems |[3, 4], aerospace
engineering [5] and economic policy formulation [6, 7].
These domains rely on the core principle of finding op-
timal solutions within the confines of respective system
limitations.

The formulation of optimal control problems into opti-
misation problems has led to efficient and specialised nu-
merical methods being developed to solve them, such as
Differential Dynamic Programming (DDP) approach [3].
Details of these methods will be discussed later, with par-
ticular focus on the Interior Point Differential Dynamic
Programming (IPDDP) method [2].

Our work involves porting the IPDDP implementa-
tion from MATLAB into a solver interface in Julia [2].
IPDDP is important as it addresses the limitations of pre-
vious DDP methods in mangaging additional constraints.
The transition from MATLAB to Julia will enhance its
accessability and applicability within the wider robotics
and control community.

We structure our report as follows. Section 1 pro-
vides an introduction to optimal control problems, their
formulations, approaches to solve them, and an example
application with an inverted problem. Section 2 presents
a variety of numerical methods, ranging from the state-of-
the-art to IPDDP. Section 3 discusses our contributions.

Section 4 discusses our results and analysis, and future
work and extensions are listed in Section 5.

1.1 Optimal Control Problems

We define the variables and formulate the optimal con-
trol problem as follows. We specifically focus on optimal
control problems with finite horizon, discrete-time sys-
tems with trajectory horizon T.

Decision variables. We denote the variables to be op-
timised as the decision variables. These are the state
state trajectory x = (zo,...,z7) and control trajectory
u = (ug,...,ur—1), composed of state vectors z; € R"
and control vectors u; € R™ for a given time step t.

Dynamics. Given a known initial state xi,j;, we set
To = Tinit- Bach subsequent state is then given by time-
varying dynamics functions f; such that

(1)

for t € {0,...,7— 1} and f; : R" x R™ — R™ are twice
continuously differentiable.

Ti41 = ft(wtaut)

Objective function. The objective function measures
the optimality of our trajectories. It can be designed in
many ways, for example - one approach would be to pe-
nalise deviations from a desried goal state.

Objective functions are additive across time and are
usually separated into stage cost functions ¢; : R xR™ —
R for t € {0,..,7—1} and a terminal cost function
£y : R™ — R, both twice continuously differentiable.

Optimisation problem. We frame the optimal con-
trol problem as the following optimisation proble, where

the optimal trajectories are recovered from the solution:

minimise
z,u
subject to

ZtT:_Ol Ci(xy,uy) + Lp ()

Tt41 = ft(il?t,ut)
ct(xt,ut) S O

Zo = Tinit,

(2)

where x;,;t is a known initial state.

Constraints. For the above problem, we can introduce
additional supplementary constraints, such as actuation
limits or state boundaries. These constraints are formu-
lated as functions ¢; : R” x R™ — R!, which are twice
continuously differentiable.

1.2 Solving Optimal Control Problems

The optimization problem defined in Eq. 2 inherently
encompasses first-order optimality conditions, known as
the Karush-Kuhn-Tucker (KKT) conditions [2]. The nu-
merical methods that are a focal point of this project
are designed to solve for trajectories that satisfy these
KKT conditions [9]. This is done by iteratively refining a
solution from an initial trajectory. Each iteration incre-
mentally adjusts the trajectory, and so each iterate gets
closer to satisfying the KKT conditions. In robotics ter-
minology, these methods are categorized into two distinct
types: direct and indirect.

Direct methods involve decision variables consisting of
both the states x; and controls u;. These methods pass
the problem formulated in Eq. 2 to general-purpose non-
linear programming (NLP) solvers like IPOPT [10] and
SNOPT [11], which are well known for their versatility
and robustness [1]. Most significantly, these methods ex-
plicitly incorporate and pass in the dynamics constraints
as defined in Eq. 1.

Indirect methods leverage the dynamical systems
structure of Eq. 2 for enhanced efficiency in comparison
to direct methods [I]. Here, only the controls are con-
sidered as the decision variables to be optimised. This is
because the dynamics constraints are used to determine
the state trajectory when simulating the system dynam-
ics. It is important to note that in these indirect methods,
the dynamics constraints remain feasible throughout the
process. This includes intermediate iterates that have not
yet converged to an optimal solution satisfying the KKT
conditions. Specialised indirect methods, such as Differ-
ential Dynamic Programming (DDP) and iterative Linear
Quadratic Regulator (iLQR) — which is a DDP method
that does not take into account second order dynamics
— achieve rapid performance. These can be attributed to
their unique theoretical derivations, alongside algorithmic
considerations which improve their complexity to find op-
timal solutions faster.

We note that both direct and indirect methods have
their advantages and disadvantages, which we explore in
further detail in Section 2.

1.8 Difficult Problems in Optimal Control

We outline this section to discuss a difficult problem
in optimal control - the inverted pendulum problem.

The inverted pendulum problem is a significant chal-
lenge in optimal control due to its inherently unstable
system with highly non-linear dynamics [12, 13, 14]. The
difficulty of this problem lies in it’s equilibrium point -
the upright position of the pendulum — which represents
a non-linearly unstable equilibrium. In this state, any
deviations to the pendulum can cause it to break equi-
librium [12, 13]. Given that there is a constant need to
counteract forces to maintain equilibrium, this makes the
problem very non-trivial to solve. This is unlike stable
systems, where deviations might correct themselves over
time.

The non-linearity of the dynamics introduces com-
plexity in designing control strategies that can stabilize
the pendulum [12,14]. This becomes more complex when
additional constraints other than the dynamics are added,
such as the mentioned actuator limits or state bound-
aries [12].

As such, problems like inverted pendulum who inher-
ently have unstable and non-linear dynamics demand so-
phisticated numerical methods that are capable of han-
dling non-linearities and additional constraints - while
managing the complexity of the system and being rea-
sonably fast for real-time use [14]. This gives rise to the
combination of efficient and robust algorithms that can
accurately model and control these difficult systems, such
as IPDDP.

We discuss these methods, alongside their advantages,
disadvantages, use-cases, and performance considerations
in the following section.

2 NUMERICAL METHODS

2.1 IPOPT

The Interior Point OPTimizer (IPOPT) is a large
scale non-linear programming solver that finds solutions
of smooth, non-convex, constrained optimisation prob-
lems [10]. TPOPT wuses a primal-dual interior point ap-
proach. It initialises the decision and dual variables
and refines them till optimality is reached [10]. IPOPT
solves a sequence of optimisation problems, in which each
is characterised by a decaying perturbation parameter,
> 01[9,10]. The sequence of solutions is known as the
central path, with the solution in the limit at p© = 0 satis-
fying the KKT conditions for Eq. 2 [9]. IPOPT, alongside
other trajectory optimisation methods, compute a search

direction taken from linearising the KKT conditions and
solving a linear system called the KKT system [9, 10].
This search direction is then used to update the primal
and dual variables [9].

To ensure robustness of convergence, [POPT employs
a filter line search strategy [10]. This is used to ensure
that the successive iterates improve with respect to the
objective function and constraints. The line search ac-
cepts steps with two criteria: sufficient decrease of the
objective function and satisfaction of the constraints [9].
This enables the line search and filter to ensure that the
iterates are moving towards optimality.

IPOPT exhibits both local quadratic convergence and
global convergence properties [2,10]. Local quadratic con-
vergence ensures that we converge quadratically to the
solution given sufficient closeness to an optimal point (in
which the KKT conditions are satisfied) [10]. Global con-
vergences ensures that regardless of the initialisation of
the decision and dual variables, convergence to a locally
optimal point is guaranteed [10]. Arbitrary additional
constraints are also easily handled by direct methods like
TPOPT, as they can be added in and the solver will handle
them to the best of its ability.

However, IPOPT does not take into account the dy-
namical systems nature of problems. In fields such as
control and robotics, this is problematic as the optimisa-
tion problems are heavily intertwined with the dynamic
processes. In particular, direct methods such as IPOPT
are only dynamically feasible in the limit [10]. Most im-
portantly, this means that extraction of an intermediate
iterate solution can be potentially infeasible with respect
to the dynamics. This motivates indirect methods that
handle the dynamics of the system, such as DDP, which
we will now describe.

2.2 Differential Dynamic Programming

Differential Dynamic Programming (DDP) methods
are an indirect approach which take into account the dy-
namical system’s structure [3]. They are thus well suited
for optimisation problems in fields such as control and
robotics. These methods utilise Bellman’s Principle of
Optimality, which defines that if an optimal sequence of
controls

w(@), u(i + 1), ...u(d), ..., u(k)
gives the solution
z(i),z(i+1),...z(5), ..., o(k)

for ¢ > 0, then the subpath from any state in that so-
lution to the end must itself be an optimal path |3, 15].
Thus, we have that the truncated controls u(j),..., u(k)
provides the optimal solution for the subpath from x(j)
onwards [15]. Invoking this principle allows us to define

the cost-to-go function recursively

F@) = min)+ i (@], ©)
c(m,u.).ﬁ()
where J§ = {r(z) [2]. This allows the optimisation prob-

lem (Eq. 2) to be broken into a series of smaller sub-
problems, each of which contain an optimal substructure
and are used to build the optimal solution.

DDP is usually comprised of two parts - the backward
pass and the forward pass [8]. In the backward pass, we
obtain a quadratic approximation for the cost-to-go func-
tion, obtained from linearising the dynamics and objec-
tive cost around the nominal trajectory [3]. This is then
recursively updated backwards in time for the whole time
horizon. The resulting approximation allows us to ex-
press an update direction to the nominal trajectory which
minimizes the cost-to-go function [8]. Interestingly, the
updates are provided in the form of a local feedback pol-
icy, otherwise known as gains, which are explicitly solved
for in backward pass. In the forward pass, the nomi-
nal trajectory is updated by evaluating the local feedback
policy [8]. This process is repeated until convergence or
optimality is reached, at which point the solution is ex-
tracted. We note that a line search and filter is commonly
applied to ensure that the updated nominal trajectory is
better than the previous iterate [2]. This ensures that
the sequence of iterates improve towards the optimality
conditions defined by the KKT system.

An important feature of DDP is around the explicit
evaluation of system dynamics is done in DDP. This en-
sures that the trajectories generated during the optimi-
sation process are dynamically feasible. This is a key
strength of indirect methods, as in contrast, direct meth-
ods suchas IPOPT are only feasible with regard to the
dynamics in the limit [2, 10]. In scenarios where we only
have bounded compute, this is a key advantage as we can
take the sub-optimal solution so far knowing it is dynam-
ically feasible.

From an algorithmic standpoint, DDP is also in-
herently much faster than other trajectory optimisation
methods such as direct collocation (IPOPT) due to their
efficient optimisation process. The explicit evaluation of
the dynamics ensures they solve reduced KKT systems
relative to direct methods. These systems scale linearly
in size with complexity O(T) for indirect approaches,
which is ensured by the forward and backward recursion
in time [9]. However, it is important to note that this
complexity does not consider the outer loop of the algo-
rithm.

Direct methods without explicit dynamic constraints
can solve the KKT system in O(T3(n +m)3), with state
dimension n and control dimension m, without exploiting
the sparsity or structure of the system [16]. Appropriate

variable re-ordering and solving a block-diagonal system
can further reduce the complexity to O(T(n +m)3) [16].

Dynamic constraints being explicitly included in-
creases the size of the KKT system. For direct methods,
this adds a complexity of O(T'a), due to the a additional
number of dual and primal variables needed [17]. This is
the case if the sparsity or problem structure of the KKT
system can be exploited. In certain scenarios, such as if
the KKT system is dense, there is no guarantee of sparsity
or such a structure, in which an added worst-case com-
plexity of O(T3a?) is needed to solve the system [16,17].
When indirect and DDP methods solve these KKT sys-
tems, the sparsity is inherently guaranteed [9], leading to
an O(T) complexity for solving [9].

Therefore, the optimal substructure property and sig-
nificantly reduced complexity for KKT systems of indi-
rect methods are implications from exploiting the dynam-
ical nature of the system, and allow indirect methods to
reach greater speeds. For this reason, DDP methods are
the preferred choice in the field of control and robotics,
where speed and feasibility of the solution are of high
importance.

2.3 DDP With Constraints

A significant challenge within Differential Dynamic
Programming (DDP) is its ability to address problems
involving inequality constraints [2]. In contrast to di-
rect methods, such as IPOPT, where arbitrary constraints
can be seamlessly integrated, DDP cannot do so as eas-
ily. Though attempts have been made to generalise DDP
methods to integrate constraints, such as incorporat-
ing box constraints on controls [18] and Augmented La-
grangian (AL) methods [19,20], they are limited. These
aforementioned methods, alongside other methods in lit-
erature have issues with numerical instability or can only
handle restricted types of constraints. In the follow-
ing sections we discuss the current state-of-the-art and
a novel method, where both aim to seamlessly integrate
constraints into the DDP framework.

2.4 ALTRO

Augmented Lagrangian TRajectory Optimizer (AL-
TRO) is the current state-of-the-art solver for constrained
optimisation problems [1]. ALTRO integrates constraints
into DDP by incorporating an Augmented Lagrangian ob-
jective with iLQR (AL-iLQR), as noted in Section 1.1
to address non-dynamic constraint violations by penalis-
ing them. The method extends its capability further by
applying active-set projection, which projects solutions
onto the manifold defined by active constraints [1]. This
allows for rapid convergence. As such, ALTRO has a myr-

Thttps://github.com/dojo-sim/Dojo.jl

iad of benefits taken from both direct and DDP methods.
These include speed, handling of generalised state and
input constraints, and initialisations that are infeasible
with regard to additional constraints [1].

However, despite these strengths, penalty formulation
methods like ALTRO have been previously observed to
encounter ill-conditioning issues [9]. Additionally, AL-
TRO lacks both local and global convergence guarantees
unlike IPOPT [1,9]. IPOPT was also found to have
tighter constraint violations by multiple orders of mag-
nitude in comparison to a similar AL-iILQR method to
ALTRO [17]. This has stemmed the exploration of more
numerically robust interior point methods with conver-
gence guarantees, such as local quadratic convergence,
and tight constraint satisfaction [9,17]. Furthermore, the
notable speed of DDP has inspired its integration with
interior point methods, which are anticipated to signifi-
cantly exceed the performance of prior AL-based formu-
lations.

2.5 IPDDP

The Interior Point Differential Dynamic Programming
(IPDDP) method [2] presents an innovative solution for
integrating constraints within the DDP framework. The
method harnesses DDP’s fast computation capabilities
and speed, and augments it with the robust numerical
stability and constraint handling of primal-dual interior
point methods [2]. The IPDDP method is notable for
circumventing the need to alter the objective function.
It does not rely on expensive active-set routines and can
also handle initialisations that are infeasible with regard
to the inequality constraints [2]. A critical advantage of
IPDDP is its demonstrated local quadratic convergence
in scenarios involving nonlinear constraints. As ALTRO
can be summarised as a combination of AL and iLQR,
IPDDP can be conceptually represented as a synthesis
of IPOPT and DDP. It takes IPOPT’s comprehensive
constraint handling and numerical stability with DDP’s
speed, positioning it as an advanced tool in optimal con-
trol problem-solving.

3 CONTRIBUTION

The current implementation of IPDDP is a codebase
in MATLAB, which is inherently slow due to it being an
interpreted language. We feel that the current codebase
lacks intuitiveness and consideration for user experience,
alongside being incompatible with a number of simula-
tors such as Dojo!. This prohibits evaluation on difficult
robotics planning problems, which hinders its applicabil-
ity despite its desirable properties. This makes it difficult
to test its effectiveness.

Our main contribution involves porting the MAT-
LAB implementation over into Julia. We provide a
faster, cleaner implementation that is integrated with
IterativelLQR.j1 - a software package that performs
trajectory optimisation using ALTRO?. This integration
provides compatibility with robotic simulators, and al-
lows us to properly evaluate the method against the
existing numerical methods for optimal control prob-
lems. We exploit the inherent high performance lan-
guage features of Julia such as automatic differentia-
tion with Symbolics.j1, just-in-time (JIT) compila-
tion, and static typing. This results in significant speed-
ups in comparison to the MATLAB code. The integration
into IterativelLQR also allows for a user-friendly and
intuitive codebase that acts as a much more extendable
API in the future. This allows the wider community to
use, build, and improve the method. We note that we
implement the code with a very different structure to the
original MATLAB code, but reconcile it with the same
results.

3.1 The Interface

The interface is clean and simple, and encapsulates
the different parts of IPDDP. We first define the dynam-
ics, costs, and constraints as functions that characterise
the problem.

function dynamics(x, u)
Defines the dynamics
end
functions cost(x, u)
Define the cost
end
functions constraints(x, u)
Define the constraints
end

We note that one difference with our implementation in
comparison to the original IPDDP algorithm is that each
of the dynamics, constraints, and costs are time vary-
ing. As such, we use the above functions to initialise
the dynamics, costs, and constraint objects. These are
subsequently passed into the solver data structure which
then extracts runs the IPDDP algorithm and extracts the
solution. The solver also has access to a list of hyper-
parameters which are defined in an options data struc-
ture. The code sample below shows the setup for the
solver.

Define the solver

solver = Solver(dynamics, cost,
constraints)

Solve the problem

solve! (solver)

2https://github.com/thowell /TterativeLQR.jl

Extract the solution
x_sol, u_sol = get_trajectory(solver)

In comparison to the MATLAB code, this interface is
more readable and intuitive for the user to follow along
with. The encapsulation of dynamics, cost, and con-
straints makes each component very extendable in the
future, while having little impact on the solver and the
rest of the codebase.

We use this interface and implement car, concar,
invpend, and arm from the IPDDP paper [2, 18], where
each is defined with their own set of dynamics, con-
straints, and costs similarly to above. At this stage, we
have reconciled our results with the car example, and
plan to reconcile the rest shortly later.

3.2 The Backward Pass

The backward pass implementation follows closely to
the MATLAB code. We note that in our implementa-
tion, we do in-place matrix multiplication. This is done
by pre-allocating matrices in the data structure within
the solver, and utilising the overloaded mul! function.
This results in faster compute times as the data struc-
tures do not need to be dynamically allocated. This is
a key difference from the MATLAB implementation that
we have changed to gain a speed-up.

We also differ in the computation of the gains. In the
current MATLAB implementation, a Cholesky decompo-
sition is used to compute the gains with a set regularisa-
tion. In our implementation, we do the same, but force
the input matrix to the Cholesky decomposition to be
symmetric prior to performing it. This is done by setting

1
X'= (X + X1,

where X is the input matrix, and performing the decom-
position on X’. This is due to minor floating-point dis-
crepancies we noticed in the matrix values, causing it to
diverge from symmetry. This deviation from its symmet-
ric nature leads to decomposition failure, resulting in ex-
cessively high regularisation that frequently prevents the
solver from extracting a solution. As such, we do this to
maintain the consistency of the algorithm and to prevent
errors later on.

3.8 The Forward Pass

The forward pass implementation in Julia mirrors that
of MATLAB. Our approach involves maintaining a simi-
lar execution process, with added optimizations. Notably,
we store nominal trajectories and variables from preced-
ing iterations. This allows improvement to be tracked
over time via comparison to these nominal trajectories.

One particular optimisation is the immediate termina-
tion of the line search if the condition checks fail at any
step. This applies to dual variables and constraints in fea-
sible IPDDP, and the dual variables and slack variables in
infeasible IPDDP. Such early termination prevents rollout
from occuring as they do not improve the objective, sav-
ing wasted computation. This pre-emptive failure stops
unnecessary computation from happening.

We note that during the evaluation of constraints,
dual variables, and slack variables in the line search
phase, Julia’s approach showed certain unintended in-
teractions with their nominal counterparts. These inter-
actions stemmed from pointer manipulation errors. We
mitigated these by employing deep copying techniques,
but we note that this aspect of the Julia implementation
offers a potential area for enhancement, particularly in
optimizing memory usage and runtime efficiency.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

We conduct our experiments on an Apple MacBook
Pro with an M2 Pro processor with 10 CPU cores.

4.1 FExecution Time

We assess the execution times by running the car
example in MATLAB and Julia, each tested fifty times
under both feasible and infeasible starting conditions, uti-
lizing a horizon of 51 steps.

Mean Execution Time Comparison

I MATLAB
@0.10' . Julia
g
'g 0.084
g
-2 0.061
=
Q
% 0.0
3 0.
]
<
[}
=

Infeasible Feasible

Initialisation Type

Figure 1: Mean execution time comparison for feasible
and infeasible initialisations of IPDDP for the car exam-
ple. Measurements were evaluated on the MATLAB and
Julia implementation using a horizon of 51.

Figure 1 shows that for feasible initialisations, we
observed mean execution times of 0.092 4+ 0.005 and
0.027 + 0.003 for MATLAB and Julia respectively. In-
feasible initialisations resulted in mean execution times

of 0.105 £ 0.005 for MATLAB and 0.029 4 0.003 seconds
for Julia. As such, we see a consistent performance in-
crease with Julia over MATLAB, with a close to fourfold
improvement in performance on average. We note that
Julia’s first initial run was slower in regard to execution
time due to it’s compilation process. However, subsequent
runs still outperformed the MATLAB code over time with
significant speed-ups.

4.2 Numerical Differences

We reconcile the numerical differences and outputs be-
tween the MATLAB and Julia code in this section. We
note that the car example was used in testing with a
horizon of 51.

Opt.error Reg. power

Iteration
41

4.700 il

4.70075e+00

4.70075e+00 .00
4,70075e+00 1. 001
4.70075e+00 0.000e+00 1. 00000
4.70075e+00 0.000e+00 1.00000e+00

2.13918e-08 7.01301e-08

Iteration Time mu Cost Opt. error Reg. power Stepsize
41 09.06587 4.06e-07 4.7008 6.957e-07 2] 1.000
42 0.06724 4.,06e-07 4,7008 1.551e-07 @ 1.000
43 9.06848 4.06e-07 4.7608 1.187e-07 @ 1.000

l’) 44 0.06965 4.06e-07 4.,7008 3.335e-08 @ 1.000
45 0.07084 2.139e-08 4.7008 0.01406 [} 1.000
46 2.07221 2.13%9e-08 4.7008 0.0001512 @ 1.000
47 0.07367 2.13%9e-08 4.7008 2.41e-05] 1.000
48 9.07511 2.13%e-08 4.7008 1.695e-06] 1.000
49 0.07634 2.139¢-08 4.7008 6.933e-07 @ 1.000
50 9.07768 2.139e-08 4.7008 7.013e-08] 1.000
~~~0ptimality reached~~~

Figure 2: Feasible IPDDP output of the car problem
with 7' = 51. a) shows the Julia code output. b) shows
the MATLAB code output.

Iteration

Elapsed time mu Cost

Opt.error

2.41018e-05
1.69531e-06
6.93268e-07
7.01301e-08

Reg. power
0.000e+00
0.000e+80
0.000e+00
0.000e+00

Stepsize

1.00000e+00
1.00000e+00
1.00000e+00
1.00000e+00

4,70075e+008
4.70075e+00
4.70075e+08
4.70075e+00

4.11726e-02 2.13918e-08
4.20489e-02 2.13918e-08

Optimality reached!

Iteration Time mu Cost Opt. error Reg. power Stepsize

51 1.017 2.139%e-08 4.7008 2.41e-05 ] 1.000
l’) 52 1.021 2.13%e-08 4.7008 1.695e-06 @ 1.000

53 1.024 2.13%e-08  4.7008 6.933e-07 @ 1.000

54 1.029 2.13%e-08 4.7008 7.013e-08 ] 1.000

~Optimality reached~n

Figure 3: Infeasible IPDDP output of the car problem
with 7' = 51. a) shows the Julia code output. b) shows
the MATLAB code output.

For a feasible initialisation, we find that the Julia out-
put (Figure 2 a) is identical to that of the MATLAB out-
put (Figure 2 b). Optimal solutions were both found in
50 iterations, and the other variables such as the pertur-
bation, objective cost, optimality error were identical to
machine precision.

The infeasible initialisation with car was also similar.
Optimal solutions were found in 54 iterations for both Ju-
lia output (Figure 3 a) and MATLAB output (Figure 3 b).



Perturbation, objective cost, and optimality error vari-
ables were also identical to machine precision.

However, we observed numerical differences in inter-
mediate computations between our implementation and
the MATLAB code. In particular, values in Julia often
had at least one extra digit of precision compared to the
MATLAB code. This caused issues when performing the
Cholesky decomposition, which we resolved as mentioned
in Section 3.2. Highlighted in red is the difference in nu-
merical precision. The values below in Table 1 are the
matrix entries of a 3 x 3 input matrix to the Cholesky
decomposition.

Table 1:  Matrix entry comparison between Julia and
MATLAB implementations.
Matrix Julia MATLAB
Entry Values Values
1,1 27.55692438875954 | 27.5569243887595
2,1 4.273521188308174 | 4.27352118830817
3,1 1.5739007016011186 | 1.57390070160112
1,2 4.253521188308174 | 4.25352118830817
2,2 23.02296281269114 | 23.0229628126911
3,2 1.1613986839920225 | 1.16139868399202
3,1 1.5739007016011182 | 1.57390070160112
3,2 1.1613986839920225 | 1.16139868399202
3,3 20.782968239015794 | 20.7829682390158

5 EXTENSIONS

We detail additional extensions from IPOPT [10] to
implement into IPDDP, with a focus on enhancing robust-
ness and computational performance. These extensions
include:

e Implementing symmetric indefinite solvers for iner-
tia correction, replacing current block-inverse com-
putations. This would give us additional eigenvalue
information, which would tell us whether or not to
add regularisation.

e Introducing advanced filters during the forward
pass line search to optimise convergence.

e Incorporating second-order corrections using
Newton-type steps to improve solution feasibility.

e Establishing a feasibility restoration phase.

6 CONCLUSION

Optimal control theory finds extensive application in
various domains, especially in dynamic robotic systems.
The Interior Point Differential Dynamic Programming
(IPDDP) approach combines the efficiency of Differen-
tial Dynamic Programming with interior point meth-

ods’ robustness, convergence assurance, and rigorous con-
straint satisfaction characteristics.The successful migra-
tion of the IPDDP implementation from MATLAB to
a more efficient, user-friendly, and simulator-compatible
interface in Julia was our principal contribution. This
transition enhanced performance (up to fourfold for the
car example), and added features such as symbolic auto-
differentiation, in-place matrix multiplication, and pre-
emptive failure during line search. In the future, we aim
to extend the capabilities of this implementation by in-
corporating additional functionalities from IPOPT, which
would further increase its performance and robustness.
We note that our effort underscores our commitment to
the field of optimal control and it’s use in the applications
of robotics and beyond.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to Mingda Xu
for his invaluable mentorship and insights throughout the
development of this work. His expertise and guidance
have been instrumental in the successful completion of
this project.

References

[1] Taylor A Howell, Brian E Jackson, and Zachary
Manchester. Altro: A fast solver for constrained tra-
jectory optimization. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 7674-7679. IEEE, 2019.

[2] Andrei Pavlov, Iman Shames, and Chris Manzie.
Interior point differential dynamic programming.
IEEE Transactions on Control Systems Technology,
29(6):2720-2727, 2021.

[3] Patrick M. Wensing, Michael Posa, Yue Hu,
Adrien Escande, Nicolas Mansard, and Andrea Del
Prete.  Optimization-based control for dynamic
legged robots, 2022.

[4] Joseph Moore and Russ Tedrake. Control synthesis
and verification for a perching uav using lqr-trees. In
2012 IEEFE 51st IEEE Conference on Decision and
Control (CDC), pages 3707-3714, 2012.

[5] Behget Agikmege, John M. Carson, and Lars Black-
more. Lossless convexification of nonconvex con-
trol bound and pointing constraints of the soft land-
ing optimal control problem. IEEE Transactions on
Control Systems Technology, 21(6):2104-2113, 2013.

[6] Robert Dorfman. An economic interpretation of op-
timal control theory. The American Economic Re-
view, 59(5):817-831, 1969.



17l

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

Daniel Leonard and Ngo Van Long. Optimal control
theory and static optimization in economics. Cam-
bridge University Press, 1992.

Ignat Georgiev. Deriving differential dynamic pro-
gramming, February 2023.

Jorge Nocedal and Stephen J. Wright. Numerical
Optimization. Springer, New York, NY, USA, 2e
edition, 2006.

Andreas Wichter and Lorenz T. Biegler. On
the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear program-
ming.  Mathematical Programming, 106(1):25-57,
April 2005.

Philip E Gill, Walter Murray, and Michael A Saun-
ders. Snopt: An sqp algorithm for large-scale con-
strained optimization. SIAM review, 47(1):99-131,
2005.

Lal Bahadur Prasad, Barjeev Tyagi, and Hari Om
Gupta. Optimal control of nonlinear inverted pen-
dulum system using pid controller and lqr: Perfor-
mance analysis without and with disturbance input.
International Journal of Automation and Comput-
ing, 11(6):661-670, December 2014.

Lal Bahadur Prasad, Hari Om Gupta, and Barjeev
Tyagi. Adaptive optimal control of nonlinear in-
verted pendulum system using policy iteration tech-
nique. IFAC Proceedings Volumes, 47(1):1138-1145,
2014.

Elisa Sara Varghese, Anju K Vincent, and
V Bagyaveereswaran. Optimal control of inverted
pendulum system using pid controller, lqr and mpc.
IOP Conference Series: Materials Science and En-
gineering, 263:052007, November 2017.

Karl Henrik Johansson. Dynamic programming.

Yang Wang and Stephen Boyd. Fast model predictive
control using online optimization. IEEE Transac-
tions on Control Systems Technology, 18(2):267-278,
March 2010.

Taylor A. Howell, Simon Le Cleac’h, Sumeet Singh,
Pete Florence, Zachary Manchester, and Vikas Sind-
hwani. Trajectory optimization with optimization-
based dynamics, 2023.

Yuval Tassa, Nicolas Mansard, and Emo Todorov.
Control-limited differential dynamic programming.
In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1168-1175. IEEE,
2014.

[19]

[20]

Brian Plancher, Zachary Manchester, and Scott
Kuindersma. Constrained unscented dynamic pro-
gramming. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
pages 5674-5680. IEEE, 2017.

Gregory Lantoine and Ryan P Russell. A hybrid dif-
ferential dynamic programming algorithm for con-
strained optimal control problems. part 1: Theory.
Journal of Optimization Theory and Applications,
154:382-417, 2012.



	Introduction
	Optimal Control Problems
	Solving Optimal Control Problems
	Difficult Problems in Optimal Control

	NUMERICAL METHODS
	IPOPT
	Differential Dynamic Programming
	DDP With Constraints
	ALTRO
	IPDDP

	Contribution
	The Interface
	The Backward Pass
	The Forward Pass

	Experimental Results and Analysis
	Execution Time
	Numerical Differences

	Extensions
	Conclusion

