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ABSTRACT

Optimising recombinant protein secretion has been vital for a myriad of biotechnologi-
cal applications. Protein secretion is primarily involved with the signal peptide and it’s
interaction with the Sec pathway. Current methods for recombinant protein secretion
are bottlenecked as they require excessive monitoring, are time and labour intensive, and
lack of a generalised, non-protein specific secretion approach, resulting in low protein
throughputs. Combinatorial methods to counteract these consequences include engineer-
ing signal peptides that are protein-generic and can be appended to a BEV and used under
the MoClo Golden Gate Cloning toolbox, allowing for a wide range of combinations for
optimisation purposes. This project focuses on presenting a signal peptide library that
optimises signal peptide interactions in the Sec pathway under the MoClo Golden Gate
Cloning toolbox. To do so, we use the common t-SNE machine learning model to extract
a set of 17 maximally diverse signal peptides can be utilised under the MoClo toolbox
from the Bacillus genus.
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INTRODUCTION

The control and expression of recombinant protein secretion has enabled an array of
emerging opportunities in the fields of synthetic biology and biotechnology (Freudl 2018).
Optimisation and maneuverability of these procedures can serve as a compelling applica-
tion in large-scale production of heterologous proteins (Burdette et al. 2018). Metabolic
engineering with model organisms such as Saccharomyces cerevisiae and Bacillus subtilis,
combined with these potential optimisations, can result in the fast processing of phar-
maceuticals and high throughputs of therapeutic development (Freudl 2018, Moore et al.
2016). These could provide great value to communities involved in research and academia
and can further accelerate the scope of synthetic biology.

Bacterial Expression Systems

Expression systems for recombinant protein production exist in both eukaryotes and
prokaryotes and are currently in use for the aforementioned biotechnological applications.
Current bacterial expression methods include engineering a bacterial expression vector
(BEV) which is transfected into the model organism (Cantoia et al. 2021). Figure 1 shows
the common elements of a BEV (Old & Primrose 2001).

Figure 1: Elements found within a BEV used for metabolic engineering of protein production
(Cantoia et al. 2021, Old & Primrose 2001). Created with BioRender.

Once a BEV is transfected into the model bacterial organism, the transcriptional cell
apparatus accesses it to undergo protein synthesis. The combination of all these BEV
elements (Figure 1) allows for fine-tuning and close monitoring of recombinant protein
production. Through the exchange of these elements, control of protein yield can be
achieved. This is essential for the variety of applications mentioned. A key part of the
BEV is the accessory signal peptide (SP) site, which contains a SP. Found just after the
promoter and before the protein of interest, a SP is a stretch of amino acids (20-30) that
is present at the N-terminus of a newly synthesised and unfolded protein (referred to as
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a precursor protein) (Anné et al. 2016, Zimmermann 2009). The SP’s primary role is to
transport the precursor protein to a destination (Freudl 2018, Prabudiansyah & Driessen
2016). In the case of bacteria, this is usually out of the cytoplasmic membrane and to
the extracellular space, guaranteeing protein translocation and moreover - recombinant
protein secretion (Prabudiansyah & Driessen 2016). This is important as it forgoes the
use of lysis to break the cell to extract the proteins, making it faster to produce and
access recombinant proteins.

However, current methods are bottlenecked as they are time and labour intensive, and
also not generalised. To effectively secrete a protein of interest, it is the case that the
engineered expression vectors must (i) secrete the protein to the required destination, (ii)
activate the protein through post-translational modifications, and (iii) control protein
levels and monitor transcription in the host organism (Burdette et al. 2018). For this
purpose, we look at generalised SP’s to add to the BEV model that works for any protein
of interest to counteract the consequences of current bottlenecked methods.

Gram-positive Sec Pathway

Gram-positive bacteria are especially efficient hosts as they are easy to handle and un-
complicated (Freudl 2018). They only possess a singular membrane (the cytoplasmic
membrane) and thus the export of a target protein across this one barrier can result in
the direct release to the extracellular space (Burdette et al. 2018, Freudl 2018). This
makes them particularly useful for recombinant protein secretion. The export of proteins
in hosts of this class out of their singular cytoplasmic membrane is likely to be utilised
using the general secretion (Sec) pathway (Freudl 2013, Prabudiansyah & Driessen 2016,
Anné et al. 2016). Protein translocation via the Sec pathway occurs post-translationally
or co-translationally (Freudl 2013).

Post-translational secretion initially involves complete translation of the protein by the
ribosome before the SP and precursor engages with the Sec pathway. Once translated, a
post-translationally interacting protein (PIP), also called a chaperone protein, stabilises
the protein in an translocation-competent state, allowing it to remain unfolded (Freudl
2013). It then directs the protein to the translocation site SecA (Prabudiansyah &
Driessen 2016). In gram-negative bacteria, this chaperone function is done by usually by
a protein called Sec B. Gram-positive bacteria lack this Sec B homologue (Freudl 2013,
Anné et al. 2016). The CsaA protein in Bacillus subtillus has been identified to the
bidding of SecB instead as it has shown binding affinity to SecA, but there exists no clear
protein substitute for SecB (Freudl 2013, Anné et al. 2016).

Co-translational secretion, while dealing more with protein insertion rather than secre-
tion, involves a signal recognition particle (SRP) (Green & Mecsas 2016). Precursor
proteins are bound to the ribosome and are targeted by the SRP (Prabudiansyah &
Driessen 2016). The SRP binds to hydrophobic N-terminus signal sequences, which is
usually the signal peptide, or transmembrane segments as they emerge from the ribo-
some, forming a SRP/RNC (ribosome nascent chain) complex (Green & Mecsas 2016,
Anné et al. 2016). This complex interacts with the SRP receptor called the FtsY and
the RNC is subsequently released to the SecYEG translocation site through the het-
erodimerization of SRP and FtsY as well as GTP hydrolysis coming from the elongation
of translation (Freudl 2013, Prabudiansyah & Driessen 2016). The precursor protein is
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followed separately to SecYEG with continuing translation and is facilitated by SecA
through ATP hydrolysis (Freudl 2013, Prabudiansyah & Driessen 2016). The key dis-
tinction between these transports methods apart from their different interacting proteins
is that the post-translational secretion translocates the entire protein (including the SP)
to the SecA site. Co-translational secretion involves translocating only the precursor to
the SecA site, and the RNC is translocated to the SecYEG site.

Figure 2: Summary of post-translational (A) and co-translational (B) systems in the Sec path-
way and their key differences. After processing through the Sec translocase, SP’s are cleaved by
signal peptidase (SPase), leaving the precursor protein translocated and folded (Freudl 2018,
Prabudiansyah & Driessen 2016). Created with BioRender.

The Sec translocase, consisting of SecA, SecYEG, and SecDF, is the primary machine that
transports proteins (Freudl 2013). SecA is a homodimeric translocation motor protein
that facilitates protein translocation across the central SecYEG pore (Prabudiansyah
& Driessen 2016). It drives the translocation step through repeated cycles of ATP-
hydrolysis, pushing the precursor protein through the channel. The SecA consists of the
DEAD and C domains (Freudl 2013, Anné et al. 2016).

The DEAD domain consists of nucleotide-binding folds NFB1 and NFB2 and a preprotein
cross-linking domain PPXD (Prabudiansyah & Driessen 2016). NFB1 and NFB2 allow
for ATP binding and hydrolysis for translocation through the channel, whereas PPXD
controls the binding of the protein so that it can be utilised by NFB1 and NFB2. The
C domain comprises of the helical scaffold domain HSD, which controls the opening
and closing of the DEAD motor (Prabudiansyah & Driessen 2016). Regulation of ATP
hydrolysis is controlled by IRA1 which inhibits it, and the C-terminus linker CTL, while
it’s function is unknown, is important in the interaction with the chaperone protein in
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post-translational secretion (Prabudiansyah & Driessen 2016). In the case that ATP
hydrolysis does not provide enough energy, a proton-motive force (pmf) to further assist
with protein translocation is provided by SecDF (Freudl 2018, 2013). The force exerted
pulls the protein through the channel and closer to the extracellular space (Freudl 2018).

Figure 3: X-ray crystallography structures of SecA (a) and SecYEG (b). SecA diagram shows
structure with the DEAD and C domain. The SecYEG diagram is a lateral structure that is
viewed from the side, linking to the cytoplasm. For SecYEG, green is SecG, red is SecY and
yellow is SecE.

SecY, SecE and SecG together form SecYEG, the protein conducing channel that is ho-
mologous to that of Sec61 in eukaryotes (Prabudiansyah & Driessen 2016). The channel
is made up by SecY, which contains 10 α-helical transmembrane segments (TMS), or-
ganised as two domains as TMSs 1-5 and TMSs 6-10 (Freudl 2013, Prabudiansyah &
Driessen 2016). These domains are connected together and form a clamshell. This is
what the protein channels through to get translocated. SecE contains of one TMS and
an amphiphatic helix in gram-positive bacteria, though usually there are 3 TMSs (Prabu-
diansyah & Driessen 2016). This one TMS and helix reinforce the clamshell structure
and allow for flexibility of SecY depending on the incoming protein. The final part, SecG,
carries the same function as the eukaryotic Sec61β. It shows limited contact with SecY
and is not necessary, but improves the efficiency of translocation and assosciates with
SecA (Prabudiansyah & Driessen 2016). The combination of these elements form the
SecYEG complex. This hourglass structure has a hydrophobic ring that allows proteins
to be undisturbed by water and other ions, which ultimately results in efficient protein
translocation (Prabudiansyah & Driessen 2016). Once the protein is translocated and
the SP is cleaved, the protein folds into it’s required orientation (Freudl 2018).

Signal Peptide Interactions

Secretion is also dependent on the SP structure, which consists of the n-domain, h-
domain and c-domain (Freudl 2013, Heijne & Gavel 1988). The n-domain, being positively
charged, interacts with the cytoplasmic membrane which is negatively charged, and aids
the translocation process (Duffaud et al. 1985). It consists mainly of proline, glycine, or
serine residues and connects to the h-domain (Duffaud et al. 1985).
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The h-domain is the central part of the SP. It is a long, hydrophobic stretch of amino acids
that is usually where the SRP binds to for co-translational processing (Anné et al. 2016,
Heijne & Gavel 1988). Binding affinity to the SRP is influenced by the strength of this
hydrophobic sequence. This then impacts the FtsY receptor and subsequent translocation
to the SecYEG site. The h-domain consists of a random distribution of 5 amino acids as
seen in Table 1 (Duffaud et al. 1985). Though the reason for these specific amino acids
is unknown, it is likely to help the SP be in a specific conformation and carry out it’s
function (Duffaud et al. 1985). The c-domain is the uncharged end of the SP. It contains
the cleavage site that usually has either an Alanine or Glycine residue, which is targeted
by the signal peptidase (Duffaud et al. 1985).

Figure 4: Diagram of domains found in a SP alongside the structure of Cyclomaltodextrin glu-
canotransferase (cgt) protein in Bacillus subtillis connected to a SP. Visualised using Alphafold
and created with BioRender (AlphaFold 2021).

Domain AA Frequencies
n-domain (positively charged) Pro, Gly, Ser
h-domain Ala, Val, Leu, Tyr, Met
c-domain (uncharged) Ala, Gly at C-terminus

Table 1: Regularly occurring amino acids within the domains of a SP (Duffaud et al. 1985)

Analysis of many SP’s have lead to the above amino acid frequencies. This could be due
to mutations that have accumulated through evolution. Due to this, there is compelling
evidence that interactions with the SRP are to do with the properties of the domains
rather than the interactions with the residues themselves (Janda et al. 2010). This allows
for a diverse SP to be utilised that contain the same chemical properties, but different
residues in their sequences (Nilsson et al. 2015). A diverse set of SP can thus lead to
optimizing interactions with the SRP and tuning the Sec secretion system, and ultimately
better control of recombinant protein production.
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Aim: Combinatorial Cloning Control

Current methods for recombinant protein secretion are bottlenecked as they are time
and labour intensive. Recent literature also argues that there is no universal SP that
optimises and promotes secretory protein production for any heterologous protein in any
bacterial host (Freudl 2018). This means that expression of recombinant proteins are
specific to the protein of interest as well as the host organism. However, SP structure
and amino acid frequencies show that interactions with the Sec pathway are influenced
by the chemical properties of the SP domains, and not by the residues in their sequences
(Janda et al. 2010, Nilsson et al. 2015). This allows us to have a diverse set of SP that
have different sequences within their domains that can influence interactions with Sec
pathway, ultimately influencing recombinant protein secretion.

MoClo Golden Gate Cloning is a popular expression system for recombinant proteins
that utilises modular vector assembly. BEV’s are designed with a series of discrete,
linked modules that attach together at different positions (Geddes et al. 2019). It allows
for the assembly of multiple DNA fragments in a specific, linearised order (Geddes et al.
2019, Weber et al. 2011). Given a toolbox under MoClo Golden Gate terms that includes
metabolically engineered BEV expression elements, we achieve combinatorial control for
expressing recombinant proteins (Moore et al. 2016). By increasing the number of SP’s
available that can be used under MoClo, we increase the number of combinations available
that can be tested in relation to specific gram-positive hosts (Geddes et al. 2019, Freudl
2018). This greatly allows for the fine-tuning of recombinant protein secretion due to the
vast number of combinations.

Figure 5: Combinatorial cloning control through MoClo Golden Gate Assembly given a toolbox
containing a set of promoters, SPs and terminators. Maximising SP diversity and thus the
amount of SP available (Y) is proportional to the combinations (C).

We screen a diverse range of SPs and create a library that can be used under MoClo
cloning, allowing high throughput screening methods that can lead to fast and reliable
monitoring of recombinant protein secretion. This study focuses on creating an SP library
from the Bacillus genus. We use novel machine learning techniques to extract visually
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diverse SPs that can be used for this purpose.

METHODS

Bio-informatic analysis for sequence diversity was done through 3 stages. More informa-
tion for the following procedures can be found at: https://github.com/pranav-pativada/
Sequence-Diversity-of-Signal-Peptides/blob/main/Lab-Book.ipynb

Characterisation and Processing of the Bacillus genus

138 reviewed amino acid sequences pertaining to secreted signal peptides amongst the
Bacillus genus were collected. This was done using an advanced search on the UniprotKB
database with the following as input: locations:(location:"Secreted [SL-0243]")

annotation:(type:signal) taxonomy:"Bacillus [1386] AND reviewed:yes" (Uniprot
2022).

These sequences were downloaded from UniprotKB as a compressed FASTA (canonical)

file. They were then input into SignalP 5.0 for the prediction of their cleavage sites with
the following as input: organism: Gram-positive, output: long format. After
being processed, results from SignalP 5.0 were downloaded as processed gff3 entries,
JSON summary, processed FASTA entry and a prediction summary.

Processed gff3 entries containing the cleavage site predictions of the SPs were converted
to a +5 post-cleavage site prediction. This is because the sequences after the cleavage
site have effects on overall SP diversity. gff3 conversion to a +5 post-cleavage site was
done using awk commands. Converted gff3 files were then used for FASTA extraction to
obtain the required sequence sets needed for the different SPs. FASTA extraction with
gff3 entries as input was processed using the BEDTools2 Suite (bedtools2 v2.30.0).

Pairwise Distance Matrix Calculations

Extracted FASTA files were put into MAFFT (Multiple Alignment using Fast Fourier
Transform) to align the sequences. This was done with the MAFFT online service.
The resulting FASTA file from MAFFT sequence alignment was then used as input for
a pairwise distance matrix propagation using the MEGA11 GUI software. Notably, the
Dayhoff model was used for the calculation of the distance matrix, as this decreased the
sparsity of the matrix, making it effective for t-SNE analysis later.

Sequence Diversity Visualisation

Singular value decomposition (SVD) followed by a t-distributed stochastic neighbor em-
bedding (t-SNE) was applied to the resulting distance matrix calculated from MEGA11 for
visualisation. A dimensionality of 3, alongside a precomputed state as the metric and a
random_state of 0 was chosen for both SVD and t-SNE. A precomputed metric assumes
that the input given is the form of a distance matrix and the 0 random_state was chosen
to ensure consistency. SVD was implemented with 12 components, 13 iterations, whereas
t-SNE was implemented with 3 components (the dimensionality) and 250 iterations. A
perplixity=30 was chosen to standardise the clusters around the origin point.
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A 3D scatter plot was constructed as the output for visualisation using the plotly pack-
age. matplotlib was used to separate the t-SNE dimensions into x-y, x-z, and y-z respec-
tively. A neighbourhood (n_hood) under the Euclidean metric space was initialised with
a value of 30 (n_hood=30) to obtain the most visually diverse SP’s. Relevant packages
used for for the SVD and t-SNE implementations are scikit-learn, pandas, numpy,

scipy and functools.

RESULTS AND DISCUSSION

Optimising recombinant protein secretion with the BEV model under MoClo Cloning re-
quires a library of maximally diverse SPs. This is because SPs with varying diversity can
be fitted into a BEV such that their interactions with the SRP and greater Sec pathway
can be carefully studied, allowing for protein control and expression. We suppose a gen-
eralised approach of these diverse SP that are not protein specific, which is complemented
by the MoClo method. The following results show the significance of the dataset used
and the extracted SPs from the dataset that make up the library that we have created.

Significance of UniprotKB Database

Subset of SignalP 5.0 Processing of Characterised SPs from UniprotKB

SP name
SignalP 5.0 AA Cleavage
Site Prediction

SignalP 5.0
Likelihood
Score

sp B1B6T1 PTLY
BACSP

ASALNSGKVNPLADFSLKGFAALNG
GTTGGEG

0.9942

sp O31803 YNCM
BACSU

QVAKAASELPNGIGGRVYLNSTGA
VFTAKIVLPETVKNNDSVSTPYI

0.7453

sp D4G3R4 WAPA
BACNB

KTTEEENGNRIVADDPEETLQKEQTE
EAVPFDPKDINKEGEITSERTENT

0.8630

sp O34344 SDPC
BACSU

KENHTFSGEDYFRGLLFGQGEVGK
LISNDLDPKLVKE

0.7189

sp P36550 CWLL
BACLI

N/A 0.2297

sp P40949 TAPA
BACSU

AFHDIETFDVSLQTCKDFQHTDKN
CHYDKRWDQSDLHISDQTDTKGTV

0.7525

sp G4NYJ6 WAPA
BACS4

KTTEEEAGNRIVSDDPEETPRNEQTEE
AVPFPSKDIN

0.9749

sp P68569 BDBA
BACSU

EKPFYNDINLTQYQKEVDSKKPKFIY
VYETS

0.7595

sp Q45071 XYND
BACSU

ATSTTIAKHIGNSNPLIDHHLGADPVA
LTYN

0.7722

Table 2: A sized 10 subset of the 138 sequences from UniprotKB processed through SignalP 5.0
for their cleavage site and SP likelihood.

We first analyse the 138 sequences gathered from the UniprotKB database to ensure their
correctness and characterisation as a SP through SignalP 5.0 processing. This shows a
prediction of the cleavage site and SP likelihood. We select a confidence likelihood score of
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0.8 and search the sequences processed by SignalP 5.0. Table 2 shows a 10 sized sample
subset of the 138 UniprotKB sequences processed. Seen in bold are the 6 classified
sequences from UniprotKB that have a SP likelihood score of less than 0.8.

In specific, the sp P36550 CWLL BACLI identified by SignalP 5.0 has no cleavage site
prediction, but was still included in the database. This raises concerns to the reliability of
the database, although all sequences are characterised as reviewed. Thus, experimental
validity of these sequences is necessary to test whether or not they are indeed SPs. For
the purpose of reliability, we do not include the SPs with that do not meet the likelihood
criteria of having a score above 0.8.

We also compare the SPs taken from UniprotKB in reference to other databases. Bacil-
lus subtilis SP libraries have been identified to contain 148 experimentally validated SPs
for cultinase secretion (Hemmerich et al. 2016). This shows that there are missing vali-
dated SPs pertaining to Bacillus subtilis in the characterisation used. It is possible that
these missing SPs are part of the unreviewed sequences and have not been incorporated.
Further investigation into validating these missing sequences to the database would be
necessary in the case that these sequences are maximally diverse SPs. Thus, we use these
experimentally validated SPs in our analysis as well to generate distinct clusters and
extract maximally diverse SPs to compensate.

Sequence Diversity Visualisation

We use the data analysis and common machine learning pipeline, t-SNE, to generate clus-
ters of SPs to visual sequence diversity. Suitable for small datasets and for maximising
localisation relationships, the t-SNE approach applied can reveal the diversity between
SPs, ultimately being useful for optimising protein secretion. We use a PCA-like trun-
cated SVD with numerous iterations to reduce the dimensionality of the dataset to 3 and
hence allow t-SNE to work in a localised, 3D space under a Euclidean metric space.

We implement t-SNE to be based on a standard substitution BLOSUM62 matrix gen-
erated from the MAFFT sequence alignment. We then calculate the pairwise distance
matrix under the Dayhoff PAM model. This serves to reduce matrix sparsity and thus
benefits the t-SNE model that will be applied to it. Repeated iterations of t-SNE with
perplexities of 30 and 75 being used for model consistency were applied to the distance
matrix. This yielded clusters around the origin point. We observe in Figures 6 and 7 the
result of the model under a neighbourhood of radius 30 in 2D.

Figure 6: 2D cross-sections of t-SNE visualisation with a perplexity of 30. Left to right is in
order of x-y, x-z, and y-z.
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Figure 7: 2D cross-sections of t-SNE visualisation with a perplexity of 75. Order of graphs is
the same as Figure 6.

17 and 22 maximally diverse SPs were found outside of the neighbourhood range for
Figures 6 and 7. This shows consistency of the model, as under two different cluster gen-
erating environments, the number of diverse SPs are similar. The key difference between
the two models is the model with perplexity 75 was more scattered than the its coun-
terpart. Table 3 shows these same sequences found in both models with perplexities 30
and 75. This shows that though the models have roughly the same amount of maximally
diverse SPs outside the neighbourhood range, there is little similarity between them, as
Table 3 only shows that 6 occur in both. We can thus use these two models that contain
different, diverse SPs to experimentally determine their effects for secretion.

SP sequence similarities in different perplexities
SP name SP sequence

sp P00648 RNBR BACAM
KTETSSHKAHTEAQVINTFDGVADYLQT
YHKLPDNYITKS

sp P39899 NPRB BACSU
EESIEYDHTYQTPSYIIEKSPQKPVQNTTQ
KES

sp Q9RMZ0 Y6545 BACAN
EKKTFTDVPNWAQQSVNYLMKKALDGKP
DGTFS

sp P05655 SACB BACSU
KETNQKPYKETYGISHITRHDMLQIPEQQK
NEKY

sp Q6YK37 XYNC BACIU
ASDAKVNISADRQVIRGFGGMNHPAWIGD
LTAAQRETA

sp Q03091 BSN1 BACAM GAPADTNLYSRLAVSTAGGTTLFPQTSSAVI

Table 3: The 6 same sequences that occur with the t-SNE model with perplexities 30 and 75.

Confirmation of sequence diversity

The t-SNE model shows the local relationships and similarities between the SPs in our
dataset, but validation of this is not guaranteed. To confirm that perplexities of both 30
and 75 yielded maximally diverse SPs that are different to each other (apart from the
re-occuring 6 in Table 3), we perform a color coded sequence alignment between them.
We use ClustalOmega and sort by sequence similarity to see the diversity between the
two, as seen in Figure 8 and Figure 9.
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Figure 8: Sequence alignment of maximally diverse sequences gathered from the t-SNE perplex-
ity 30 model containing 17 SPs

Figure 9: Sequence alignment of maximally diverse sequences gathered from the t-SNE perplex-
ity 75 model containing 22 SPs

The ClustalOmega sequence alignment for the 17 SPs seen in Figure 8 shows scatterd-
ness in the positions of 1-20, but then strong alignment for those after especially in the
positions of 20-40. This likely means there is strong diversity in the hydrophobic region
of the SPs. This is different to the set of 22 SPs seen in Figure 9, which is much more
scattered and the sequence alignment prolongs to much past the length of an average SP.
Alignment diversity between the 22 SPs is found in different areas. We see this in AA
positions 20-50 in the first half, then in positions 60+ for the lower half of SPs. Although
sequenced by diversity and not input order, this shows that the set of SPs computed by
the model are inconsistent with the general due to much wider scattering. Additionally,
we see that between these sets, there is much more diversity of AA residues compared
to the literature specific frequent AAs as introduced in Table 1. Given there is strong
diversity in the hydrophobic region, combined with the added diversity of more AAs, this
could be ideal for optimising the different interactions with the SRP. For these purpose,
we create our library with the 17 SPs identified in Figure 8.

Validation and Testing with 148 SP set
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We finally test our results against the validated 148 SP sequence set obtained as men-
tioned before in a study done to measure cultinase secretion (Hemmerich et al. 2016).
We scrape these SPs and then follow the procedure and apply our t-SNE model under
a neighbourhood of radius 30. We also use a constant perplexity of 30 as per the more
diverse and better alignment found with our own dataset for this purpose.

(a) All SPs (b) Maximally diverse SPs outside of neigh-
bourhood range

Figure 10: 3D representation of t-SNE model applied to 148 SP sequence set. (a) represents all
148 sequences in 3D space, whereas (b) represents only the SPs outside of the neighbourhood
distance of 30.

Figure 11: 2D cross-section of t-SNE model applied to 148 sequence set. Seen in red is the
neighbourhood with distance of 30.

Applying the model to this dataset of SP yielded similar results to that of of our dataset.
20 SPs outside the neighbourhood range were gathered as maximally diverse SP, which
is also similar to that of the 17 SPs gathered. We can thus use these SPs as well as
part of the library by cross-referencing with our current 17 SP sequence set, searching for
diversity and similarities. This can further optimise and fine-tune the interactions of the
SP with the Sec pathway. With this model, we can append it with our own dataset, and
extract SPs by potentially increasing the neighbourhood distance beyond 30. This allows
us to further maximise diversity, which can then be tested with the sequence alignment
as done in Figures 8 and 9.

Improvements and areas for future research

Given the required computational power, analysis can be done to verify the validity of
these SPs by checking their secretory activity. This gives us insight on whether they
are applicable to be used effectively with the MoClo Golden Gate system. Using an
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experimentally validated secreted protein, such as GFP, and appending it to our 17
SP sequence set as well as the 20 sequence set validated from literature - we can test
the destination of our SPs. This would be done using three processing tools - TargetP
2.0, BUSAC and MULocDeep. TargetP 2.0, a subcellular prediction homologue to the
previously used procssing tool SignalP 5.0, is used to predict the likelihood rate and
thus presence that an SP exists at the N-terminus of the protein. This allows us to
confidently validate the SPs that have been appended to GFP. To minimise bias, we
incorporate BUSAC and MuLocDeep for subcellular and suborganelle prediction of the
SPs. BUSAC and MuLocDeep both use deep-learning and neural network algorithms for
processing, indicating their robustness. Positive and consistent localisations across these
models, given their reliability, can thus give further insight and warrant experimental
validation of these SPs. Repeating this process with different screted proteins can then
help establish the robustness of our results.

Testing multiple datasets with a different bio-informatic package, such as the SecretSanta,
could also prove useful. SecretSanta allows us to screen Bacillus secretomes under stricter
conditions, such as their localisation results (Gogleva et al. 2018). We compile datasets of
relevant secretomes found in literature, such as the 220 SP set from Bacillus licheniformis
(Freudl 2018). We can remove proteins that are targeted to the plastid or the mitochon-
dria. Screening the multiple secretomes available from our compilation, we narrow down
and improve the reliability of our datasets. We can then apply our t-SNE model to each
secretome dataset available and compare the clusters in between secretomes accordingly
toolbox. Compiling these different secretomes together and then performing a t-SNE
analysis could also be beneficial to see the difference in sequence diversity of SP in their
own secretome to the entire genus, further providing information on the accessibility of
the SPs. This can provide great insight on the best host to use with the MoClo Cloning
system.

Furthermore, understanding the significance of the AA sequences of the post-cleavage
and their effect on sequence diversity would help in optimising interactions between SPs
and the Sec pathway. Conducting three separate t-SNE analysis’ at just the post-cleavage
site, at 5+ the post-cleavage site, and at 10+ post-cleavage site can help in seeing this
effect. Given a notable effect on sequence diversity, the most optimal post-cleavage site
inclusion can be utilised and be included as part of the library to see how it affects protein
secretion.

A genome-scale network reconstruction, though extremely computationally expensive and
time-intensive, is a cutting-edge approach and would provide complete control of analysis
for recombinant protein secretion. Using metabolic knowledge bases, we can computa-
tionally construct the biochemical pathways needed for a particular host, such as Bacillus
subtilis (Fang et al. 2020). This allows us to predict SP interactions with the Sec pathway,
and moreso predict the consequences of using diverse SPs (Fang et al. 2020). Given the
reaction of the protein in our BEV, we can construct a metabolic network. This allows
us to construct a solution space that can be used to optimise this reaction. Thus, using
this approach we use the maximally diverse SPs in our library and optimise each SP’s
solution space, allowing for better control of protein secretion.
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Figure 12: Computational GEM construction and optimization of the solution space using a
stoichiometric S matrix.

CONCLUSION

In this project, we aimed to create and analyse a SP library of maximally diverse SPs for
the purpose of optimising non-protein specific secretion under the MoClo Golden Gate
model, allowing us to achieve combinatorial control. By using the novel machine learning
t-SNE technique, Bacillus genus, we obtained 17 SPs that are maximally diverse and
generally consistent with SP structure. By using likelihood and neighbourhood param-
eters, as well as sequence alignments to confirm their diversity, we further cross-tested
with a validated 148 SP set. We conclude that these 17 SPs are a first step into allowing
for the optimisation of recombinant protein secretion for Bacillus hosts. Future research
is recommended into experimentally validating this library, as well as conducting more
bio-informatic analysis. Methods outlined for this purpose are localisation processing,
individual secretome analysis, effect of post-cleavage inclusion, and a construction of a
genome-scale network for full optimisation of SPs and their reactions.
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